Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Milton H. Saier is active.

Publication


Featured researches published by Milton H. Saier.


Biochimica et Biophysica Acta | 1994

A functional superfamily of sodium/solute symporters

Jonathan Reizer; Aiala Reizer; Milton H. Saier

Eleven families of sodium/solute symporters are defined based on their degrees of sequence similarities, and the protein members of these families are characterized in terms of their solute and cation specificities, their sizes, their topological features, their evolutionary relationships, and their relative degrees and regions of sequence conservation. In some cases, particularly where site-specific mutagenesis analyses have provided functional information about specific proteins, multiple alignments of members of the relevant families are presented, and the degrees of conservation of the mutated residues are evaluated. Signature sequences for several of the eleven families are presented to facilitate identification of new members of these families as they become sequenced. Phylogenetic tree construction reveals the evolutionary relationships between members of each family. One of these families is shown to belong to the previously defined major facilitator superfamily. The other ten families do not show sufficient sequence similarity with each other or with other identified transport protein families to establish homology between them. This study serves to clarify structural, functional and evolutionary relationships among eleven distinct families of functionally related transport proteins.


Biochimica et Biophysica Acta | 2002

Protein-translocating outer membrane porins of Gram-negative bacteria

Ming-Ren Yen; Christopher R. Peabody; Salar M. Partovi; Yufeng Zhai; Yi-Hsiung Tseng; Milton H. Saier

Five families of outer membrane porins that function in protein secretion in Gram-negative bacteria are currently recognized. In this report, these five porin families are analyzed from structural and phylogenetic standpoints. They are the fimbrial usher protein (FUP), outer membrane factor (OMF), autotransporter (AT), two-partner secretion (TPS) and outer membrane secretin (Secretin) families. All members of these families in the current databases were identified, and all full-length homologues were multiply aligned for structural and phylogenetic analyses. The organismal distribution of homologues in each family proved to be unique with some families being restricted to proteobacteria and others being widespread in other bacterial kingdoms as well as eukaryotes. The compositions of and size differences between subfamilies provide evidence for specific orthologous relationships, which agree with available functional information and intra-subfamily phylogeny. The results reveal that horizontal transfer of genes encoding these proteins between phylogenetically distant organisms has been exceptionally rare although transfer within select bacterial kingdoms may have occurred. The resultant in silico analyses are correlated with available experimental evidence to formulate models relevant to the structures and evolutionary origins of these proteins.


Biochimica et Biophysica Acta | 2003

The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions.

Thien B. Cao; Milton H. Saier

We have identified all homologues in the current databases of the ubiquitous protein constituents of the general secretory (Sec) pathway. These prokaryotic/eukaryotic proteins include (1) SecY/Sec61alpha, (2) SecE/Sec61gamma, (3) SecG/Sec61beta, (4) Ffh/SRP54 and (5) FtsY/SRP receptor subunit-alpha. Phylogenetic and sequence analyses lead to major conclusions concerning (1) the ubiquity of these proteins in living organisms, (2) the topological uniformity of some but not other Sec constituents, (3) the orthologous nature of almost all of them, (4) a total lack of paralogues in almost all organisms for which complete genome sequences are available, (5) the occurrence of two or even three paralogues in a few bacteria, plants, and yeast, depending on the Sec constituent, and (6) a tremendous degree of sequence divergence in bacteria compared with that in archaea or eukaryotes. The phylogenetic analyses lead to the conclusion that with a few possible exceptions, the five families of Sec constituents analyzed generally underwent sequence divergence in parallel but at different characteristic rates. The results provide evolutionary insights as well as guides for future functional studies. Because every organism with a fully sequenced genome exhibits at least one orthologue of each of these Sec proteins, we conclude that all living organisms have relied on the Sec system as their primary protein secretory/membrane insertion system. Because most prokaryotes and many eukaryotes encode within their genomes only one of each constituent, we also conclude that strong evolutionary pressure has minimized gene duplication events leading to the establishment of Sec paralogues. Finally, the sequence diversity of bacterial proteins as compared with their archaeal and eukaryotic counterparts is in agreement with the suggestion that bacteria were the evolutionary predecessors of archaea and eukaryotes.


Journal of Molecular Microbiology and Biotechnology | 2005

Ser/Thr/Tyr Protein Phosphorylation in Bacteria – For Long Time Neglected, Now Well Established

Josef Deutscher; Milton H. Saier

The first clearly established example of Ser/Thr/Tyr phosphorylation of a bacterial protein was isocitrate dehydrogenase. In 1979, 25 years after the discovery of protein phosphorylation in eukaryotes, this enzyme was reported to become phosphorylated on a serine residue. In subsequent years, numerous other bacterial proteins phosphorylated on Ser, Thr or Tyr were discovered and the corresponding protein kinases and P-protein phosphatases were identified. These protein modifications regulate all kinds of physiological processes. Ser/Thr/Tyr phosphorylation in bacteria therefore seems to play a similar important role as in eukaryotes. Surprisingly, many bacterial protein kinases do not exhibit any similarity to eukaryotic protein kinases, but rather resemble nucleotide-binding proteins or kinases phosphorylating diverse low-molecular-weight substrates.


Journal of Molecular Evolution | 1995

Response regulators of bacterial signal transduction systems: Selective domain shuffling during evolution

Gerald M. Pao; Milton H. Saier

Response regulators of bacterial sensory transduction systems generally consist of receiver module domains covalently linked to effector domains. The effector domains include DNA binding and/or catalytic units that are regulated by sensor kinase-catalyzed aspartyl phosphorylation within their receiver modules. Most receiver modules are associated with three distinct families of DNA binding domains, but some are associated with other types of DNA binding domains, with methylated chemotaxis protein (MCP) demethylases, or with sensor kinases. A few exist as independent entities which regulate their target systems by noncovalent interactions.In this study the molecular phylogenies of the receiver modules and effector domains of 49 fully sequenced response regulators and their homologues were determined. The three major, evolutionarily distinct, DNA binding domains found in response regulators were evaluated for their phylogenetic relatedness, and the phylogenetic trees obtained for these domains were compared with those for the receiver modules. Members of one family (family 1) of DNA binding domains are linked to large ATPase domains which usually function cooperatively in the activation of E. Coli σ54-dependent promoters or their equivalents in other bacteria. Members of a second family (family 2) always function in conjunction with the E. Coli σ70 or its equivalent in other bacteria. A third family of DNA binding domains (family 3) functions by an uncharacterized mechanism involving more than one a factor. These three domain families utilize distinct helix-turn-helix motifs for DNA binding.The phylogenetic tree of the receiver modules revealed three major and several minor clusters of these domains. The three major receiver module clusters (clusters 1, 2, and 3) generally function with the three major families of DNA binding domains (families 1, 2, and 3, respectively) to comprise three classes of response regulators (classes 1, 2, and 3), although several exceptions exist. The minor clusters of receiver modules were usually, but not always, associated with other types of effector domains. Finally, several receiver modules did not fit into a cluster. It was concluded that receiver modules usually diverged from common ancestral protein domains together with the corresponding effector domains, although domain shuffling, due to intragenic splicing and fusion, must have occurred during the evolution of some of these proteins.Multiple sequence alignments of the 49 receiver modules and their various types of effector domains, together with other homologous domains, allowed definition of regions of striking sequence similarity and degrees of conservation of specific residues. Sequence data were correlated with structure/function when such information was available. These studies should provide guides for extrapolation of results obtained with one response regulator to others as well as for the design of future structure/function analyses.


Protein Science | 2009

The β-barrel finder (BBF) program, allowing identification of outer membrane β-barrel proteins encoded within prokaryotic genomes

Yufeng Zhai; Milton H. Saier

Many outer membrane proteins (OMPs) in Gram‐negative bacteria possess known β‐barrel three‐dimensional (3D) structures. These proteins, including channel‐forming transmembrane porins, are diverse in sequence but exhibit common structural features. We here report computational analyses of six outer membrane proteins of known 3D structures with respect to (1) secondary structure, (2) hydropathy, and (3) amphipathicity. Using these characteristics, as well as the presence of an N‐terminal targeting sequence, a program was developed allowing prediction of integral membrane β‐barrel proteins encoded within any completely sequenced prokaryotic genome. This program, termed the β‐barrel finder (BBF) program, was used to analyze the proteins encoded within the Escherichia coli genome. Out of 4290 sequences examined, 118 (2.8%) were retrieved. Of these, almost all known outer membrane proteins with established β‐barrel structures as well as many probable outer membrane proteins were identified. This program should be useful for predicting the occurrence of outer membrane proteins in bacteria with completely sequenced genomes.


Biochimica et Biophysica Acta | 2003

Protein secretion systems of Pseudomonas aeruginosa and P. fluorescens

Qinhong Ma; Yufeng Zhai; Jane C. Schneider; Tom M. Ramseier; Milton H. Saier

Gram-negative bacteria have evolved numerous systems for the export of proteins across their dual-membrane envelopes. Three of these systems (types I, III and IV) secrete proteins across both membranes in a single energy-coupled step. Four systems (Sec, Tat, MscL and Holins) secrete only across the inner membrane, and four systems [the main terminal branch (MTB), fimbrial usher porin (FUP), autotransporter (AT) and two-partner secretion families (TPS)] secrete only across the outer membrane. We have examined the genome sequences of Pseudomonas aeruginosa PAO1 and Pseudomonas fluorescens Pf0-1 for these systems. All systems except type IV were found in P. aeruginosa, and all except types III and IV were found in P. fluorescens. The numbers of each such system were variable depending on the system and species examined. Biochemical and physiological functions were assigned to these systems when possible, and the structural constituents were analyzed. Available information regarding the mechanisms of transport and energy coupling as well as physiological functions is summarized. This report serves to identify and characterize protein secretion systems in two divergent pseudomonads, one an opportunistic human pathogen, the other a plant symbiont.


Journal of Molecular Microbiology and Biotechnology | 2010

The P-Type ATPase Superfamily

Henry Chan; Vartan Babayan; Elya Blyumin; Charmy Gandhi; Kunal Hak; Danielle Harake; Kris Kumar; Perry Lee; Tze T. Li; Hao Yi Liu; Tony Chung Tung Lo; Cynthia Meyer; Steven Stanford; Krista S. Zamora; Milton H. Saier

P-type ATPases function to provide homeostasis in higher eukaryotes, but they are essentially ubiquitous, being found in all domains of life. Thever and Saier [J Memb Biol 2009;229:115–130] recently reported analyses of eukaryotic P-type ATPases, dividing them into nine functionally characterized and 13 functionally uncharacterized (FUPA) families. In this report, we analyze P-type ATPases in all major prokaryotic phyla for which complete genome sequence data are available, and we compare the results with those for eukaryotic P-type ATPases. Topological type I (heavy metal) P-type ATPases predominate in prokaryotes (approx. tenfold) while type II ATPases (specific for Na+,K+, H+ Ca2+, Mg2+ and phospholipids) predominate in eukaryotes (approx. twofold). Many P-type ATPase families are found exclusively in prokaryotes (e.g. Kdp-type K+ uptake ATPases (type III) and all ten prokaryotic FUPA familes), while others are restricted to eukaryotes (e.g. phospholipid flippases and all 13 eukaryotic FUPA families). Horizontal gene transfer has occurred frequently among bacteria and archaea, which have similar distributions of these enzymes, but rarely between most eukaryotic kingdoms, and even more rarely between eukaryotes and prokaryotes. In some bacterial phyla (e.g. Bacteroidetes, Flavobacteria and Fusobacteria), ATPase gene gain and loss as well as horizontal transfer occurred seldom in contrast to most other bacterial phyla. Some families (i.e. Kdp-type ATPases) underwent far less horizontal gene transfer than other prokaryotic families, possibly due to their multisubunit characteristics. Functional motifs are better conserved across family lines than across organismal lines, and these motifs can be family specific, facilitating functional predictions. In some cases, gene fusion events created P-type ATPases covalently linked to regulatory catalytic enzymes. In one family (FUPA Family 24), a type I ATPase gene (N-terminal) is fused to a type II ATPase gene (C-terminal) with retention of function only for the latter. Several pseudogene-encoded nonfunctional ATPases were identified. Genome minimalization led to preferential loss of P-type ATPase genes. We suggest that in prokaryotes and some unicellular eukaryotes, the primary function of P-type ATPases is protection from extreme environmental stress conditions. The classification of P-type ATPases of unknown function into phylogenetic families provides guides for future molecular biological studies.


Gene | 1996

Novel phosphotransferase-encoding genes revealed by analysis of the Escherichia coli genome: a chimeric gene encoding an Enzyme I homologue that possesses a putative sensory transduction domain.

Jonathan Reizer; Aiala Reizer; Mike Merrick; Guy Plunkett; Debra J. Rose; Milton H. Saier

Two genes (ptsI and ptsA) that encode homologues of the energy coupling Enzyme I of the phosphoenolpyruvate-dependent sugar-transporting phosphotransferase system (PTS) have previously been identified on the Escherichia coli chromosome. We here report the presence of a third E. coli gene, designated ptsP, that encodes an Enzyme I homologue, here designated Enzyme INtr. Enzyme INtr possesses an N-terminal domain homologous to the N-terminal domains of NifA proteins [(127 amino acids (aa)] joined via two tandem flexible linkers to the C-terminal Enzyme I-like domain (578 aa). Structural features of the putative ptsP operon, including transcriptional regulatory signals, are characterized. We suggest that Enzyme INtr functions in transcriptional regulation of nitrogen-related operons together with previously described PTS proteins encoded within the rpoN operon. It may thereby provide a link between carbon and nitrogen assimilatory pathways.


Microbiology | 1995

Identification and characterization of phosphoenolpyruvate: fructose phosphotransferase systems in three Streptomyces species

Friedrich Titgemeyer; Jürgen Walkenhorst; Jonathan Reizer; Maarten H. Stuiver; Xuewen Cui; Milton H. Saier

Streptomyces lividans, S. coelicolor and S. griseofuscus were examined for the presence of the enzymes of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). All three species were shown to possess Enzyme I, HPr and fructose-specific Enzyme II (IIFru) activities. In S. lividans and S. coelicolor, all three PTS enzymes were fructose-inducible, but in S. griseofuscus the system was expressed constitutively. These organisms apparently lack the HPr(Ser) kinase and HPr(Ser-P) phosphatase that characterize low-GC Gram-positive bacteria.

Collaboration


Dive into the Milton H. Saier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aiala Reizer

University of California

View shared research outputs
Top Co-Authors

Avatar

Ming-Ren Yen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge