Min-Hui Pan
Southwest University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Min-Hui Pan.
Antiviral Research | 2014
Jun Zhang; Qian He; Chundong Zhang; Xiang-Yun Chen; Xue-Mei Chen; Zhan-Qi Dong; Na Li; Xiu-Xiu Kuang; Ming-Ya Cao; Cheng Lu; Min-Hui Pan
Bombyx mori nucleopolyhedrovirus (BmNPV) is a major silkworm pathogen, causing substantial economic losses to the sericulture industry annually. We demonstrate a novel anti-BmNPV system expressing mature artificial microRNAs (amiRNAs) targeting the viral lef-11 gene. The mature amiRNAs inhibited the lef-11 gene in silkworm BmN-SWU1 cells. Antiviral assays demonstrated that mature amiRNAs silenced the gene and inhibited BmNPV proliferation efficiently. As constitutive overexpression of mature amiRNAs may induce acute cellular toxicity, we further developed a novel virus-induced amiRNA expression system. The amiRNA cassette is regulated by a baculovirus-induced fusion promoter. This baculovirus-induced RNA interference system is strictly regulated by virus infection, which functions in a negative feedback loop to activate the expression of mature amiRNAs against lef-11 and subsequently control inhibition of BmNPV replication. Our study advances the use of a regulatable amiRNA cassette as a safe and effective tool for research of basic insect biology and antiviral application.
Virus Research | 2014
Zhan-Qi Dong; Jun Zhang; Xue-Mei Chen; Qian He; Ming-Ya Cao; La Wang; Hai-Qing Li; Wen-Fu Xiao; Cai-xia Pan; Cheng Lu; Min-Hui Pan
Bombyx mori nucleopolyhedrovirus (BmNPV) ORF79 (Bm79) encodes an occlusion-derived virus (ODV)-specific envelope protein, which is a homologue of the per os infectivity factor 4 (PIF4) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). To investigate the role of ORF79 in the BmNPV life cycle, a Bm79 knockout virus (vBm(Bm79KO)) was constructed through homologous recombination in Escherichia coli. Viral DNA replication, budded virus (BV) production and polyhedra formation were unaffected by the absence of BM79. However, results of the larval bioassay demonstrated that the Bm79 deletion resulted in a complete loss of per os infection. Immunofluorescence analysis showed that BM79 localized at the innernuclear membrane of infected cells through its N-terminal sorting motif (SM). Further bimolecular fluorescence protein complementation and co-immunoprecipitation assays demonstrated the interaction of BM79 with PIF1, PIF2, PIF3 and ODV-E66. Thus, BM79 plays an important role in per os infection and is associated with the viral PIF complex of BmNPV.
Journal of Insect Physiology | 2012
Chundong Zhang; Fang-Fang Li; Xiang-Yun Chen; Mao-Hua Huang; Jun Zhang; Hongjuan Cui; Min-Hui Pan; Cheng Lu
The silk gland is an important organ in silkworm as it synthesizes silk proteins and is critical to spinning. The genomic DNA content of silk gland cells dramatically increases 200-400 thousand times for the larval life span through the process of endomitosis. Using in vitro culture, DNA synthesis was measured using BrdU labeling during the larval molt and intermolt periods. We found that the cell cycle of endomitosis was activated during the intermolt and was inhibited during the molt phase. The anterior silk gland, middle silk gland, and posterior silk gland cells asynchronously exit the endomitotic cycle after day 6 in 5th instar larvae, which correlated with the reduced expression of the cell cycle-related cdt1, pcna, cyclin E, cdk2 and cdk1 mRNAs in the wandering phase. Additional starvation had no effect on the initiation of silk gland DNA synthesis of the freshly ecdysed larvae.
PLOS ONE | 2015
Xiao-long Dong; Tai-hang Liu; Wei Wang; Cai-xia Pan; Yun-fei Wu; Guo-yu Du; Peng Chen; Cheng Lu; Min-Hui Pan
We previously established two silkworm cell lines, BmN-SWU1 and BmN-SWU2, from Bombyx mori ovaries. BmN-SWU1 cells are susceptible while BmN-SWU2 cells are highly resistant to BmNPV infection. Interestingly, we found that the entry of BmNPV into BmN-SWU2 cells was largely inhibited. To explore the mechanism of this inhibition, in this study we used isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative protein expression profiling and identified 629 differentially expressed proteins between the two cell lines. Among them, we identified a new membrane protein termed BmREEPa. The gene encoding BmREEPa transcribes two splice variants; a 573 bp long BmREEPa-L encoding a protein with 190 amino acids and a 501 bp long BmREEPa-S encoding a protein with 166 amino acids. BmREEPa contains a conserved TB2/DP, HVA22 domain and three transmembrane domains. It is localized in the plasma membrane with a cytoplasmic C-terminus and an extracellular N-terminus. We found that limiting the expression of BmREEPa in BmN-SWU1 cells inhibited BmNPV entry, whereas over-expression of BmREEPa in BmN-SWU2 cells promoted BmNPV entry. Our results also indicated that BmREEPa can interact with GP64, which is the key envelope fusion protein for BmNPV entry. Taken together, the findings of our study revealed that BmREEPa is required for BmNPV to gain entry into silkworm cells, and may provide insights for the identification of BmNPV receptors.
Scientific Reports | 2016
Tai-hang Liu; Xiao-long Dong; Cai-xia Pan; Guo-yu Du; Yun-fei Wu; Ji-gui Yang; Peng Chen; Cheng Lu; Min-Hui Pan
Atlastin is a member of the dynamin protein superfamily and it can mediate homotypic fusion of endoplasmic reticulum (ER) membranes, which is required for many biological processes. In this study, a new Atlastin homologous protein, BmAtlastin-n, was characterized in silkworms and was found to contain an N-terminal conserved GTPase domain and a coiled-coil middle domain. BmAtlastin-n is localized in the cytoplasm and enriched in silkworm midgut. Results also showed that overexpression of BmAtlastin-n in BmN-SWU1 cells could enhance resistance to BmNPV. To better confirm its antiviral effect, microRNA was used to knock down the expression of BmAtlastin-n in BmE-SWU1 cells with inducing the reproduction of BmNPV. A transgenic expression vector of BmAtlastin-n was constructed and introduced to silkworm embryos by microinjection. The transgenic silkworm also showed considerable antiviral capacity. In conclusion, these findings demonstrate that BmAtlastin-n plays an important role in BmNPV defense. More importantly, the current study may provide a new clue for Atlastin research.
Biochemical and Biophysical Research Communications | 2014
Chun Pan; Yan-Fen Hu; Hua-Shan Yi; Juan Song; La Wang; Min-Hui Pan; Cheng Lu
Bcl-2 family proteins have been reported previously to play important roles in the mitochondrial apoptotic pathway. Particularly, Bmbuffy has been identified as a key homologue of Bcl-2 in silkworm; however, its exact function is unknown. In this study, we investigated the role of Bmbuffy in hydroxycamptothecine (HCPT)-induced apoptosis of BmN-SWU1 cells. By conducting confocal microscopy studies, we found that Bmbuffy is located on the outer membrane of mitochondria and endoplasmic reticulum (ER). Furthermore, we discovered that the hydrophobic transmembrane domain at the COOH terminus is a putative anchor for the subcellular localization of Bmbuffy. Overexpression of Bmbuffy inhibited cytochrome c release, activation of caspase-3 and cell apoptosis, while RNAi-mediated silencing of Bmbuffy promoted apoptosis. In the absence of a hydrophobic membrane anchor, we revealed that Bmbuffy is unable to block apoptosis. These results indicate that Bmbuffy acts as an anti-apoptotic protein, located on the mitochondrial outer membrane and is involved in the mitochondrial apoptotic pathway. Moreover, in HCPT-induced apoptosis, we showed that the translocation of endogenous Bmp53 from the nucleus to the mitochondria is a slow and progressive process, followed by cytochrome c release. This suggests that mitochondrial Bmp53 accumulation may contribute to membrane permeability. The co-localization of Bmp53 and Bmbuffy suggests the interaction of the two proteins, which was further confirmed by Co-IP assay. In addition, overexpression of Bmp53 increased cytochrome c release and the cell apoptotic rate, whereas Bmbuffy overexpression blocked these. All the data suggest that Bmbuffy functions as an anti-apoptotic protein and interacts with Bmp53 in HCPT-induced apoptosis of silkworm cells.
PLOS ONE | 2014
Jun Zhang; Xue-Mei Chen; Chundong Zhang; Qian He; Zhan-Qi Dong; Ming-Ya Cao; Xiao-long Dong; Cai-xia Pan; Cheng Lu; Min-Hui Pan
We previously established and characterized two insect cell lines (BmN-SWU1 and BmN-SWU2) from Bombyx mori ovaries. Here, we examined their differential susceptibilities to Bombyx mori nucleopolyhedrovirus (BmNPV) despite having originated from the same tissue source. BmN-SWU1 cells were susceptible and supported high titers of BmNPV replication, while BmN-SWU2 cells were resistant to BmNPV infection. Subcellular localization analysis demonstrated that very few BmNPV particles could be imported into BmN-SWU2 cells. However, initiation of BmNPV DNA replication but not amplification was detected in BmN-SWU2 cells after transfection with vA4prm-VP39-EGFP bacmid DNA. BmNPV transcription assays showed that late and very late but not early viral genes apparently were blocked in BmNSWU2 cells by unknown mechanisms. Further syncytium formation assays demonstrated that the BmNPV envelope fusion protein GP64 could not mediate BmN-SWU2 host cell-cell membrane fusion. Taken together, these results indicate that these two cell lines represent optimal tools for investigating host-virus interactions and insect antiviral mechanisms.
Insect Science | 2016
Yao-Feng Li; Xiang-Yun Chen; Chundong Zhang; Xiao-Fang Tang; La Wang; Tai-hang Liu; Min-Hui Pan; Cheng Lu
Silk gland cells of silkworm larvae undergo multiple cycles of endomitosis for the synthesis of silk proteins during the spinning phase. In this paper, we analyzed the endomitotic DNA synthesis of silk gland cells during larval development, and found that it was a periodic fluctuation, increasing during the vigorous feeding phase and being gradually inhibited in the next molting phase. That means it might be activated by a self‐regulating process after molting. The expression levels of cyclin E, cdt1 and pcna were consistent with these developmental changes. Moreover, we further examined whether these changes in endomitotic DNA synthesis resulted from feeding or hormonal stimulation. The results showed that DNA synthesis could be inhibited by starvation and re‐activated by re‐feeding, and therefore appears to be dependent on nutrition. DNA synthesis was suppressed by in vivo treatment with 20‐hydroxyecdysone (20E). However, there was no effect on DNA synthesis by in vitro 20E treatment or by either in vivo or in vitro juvenile hormone treatment. The levels of Akt and 4E‐BP phosphorylation in the silk glands were also reduced by starvation and in vivo treatment with 20E. These results indicate that the activation of endomitotic DNA synthesis during the intermolt stages is related to feeding and DNA synthesis is inhibited indirectly by 20E.
Biochemical and Biophysical Research Communications | 2014
Hua-Shan Yi; Cai-xia Pan; Chun Pan; Juan Song; Yan-Fen Hu; La Wang; Min-Hui Pan; Cheng Lu
In this study we identified a potential pro-apoptotic caspase gene, Bombyx mori(B. mori)ICE-2 (BmICE-2) which encoded a polypeptide of 284 amino acid residues, including a (169)QACRG(173) sequence which surrounded the catalytic site and contained a p20 and a p10 domain. BmICE-2 expressed in Escherichia coli (E. coli) exhibited high proteolytic activity for the synthetic human initiator caspase-9 substrates Ac-LEHD-pNA, but little activity towards the effector caspase-3 substrates Ac-DEVD-pNA. When BmICE-2 was transiently expressed in BmN-SWU1 silkworm B. mori cells, we found that the high proteolytic activity for Ac-LEHD-pNA triggered caspase-3-like protease activity resulting in spontaneous cleavage and apoptosis in these cells. This effect was not replicated in Spodoptera frugiperda 9 cells. In addition, spontaneous cleavage of endogenous BmICE-2 in BmN-SWU1 cells could be induced by actinomycin D. These results suggest that BmICE-2 may be a novel pro-apoptotic gene with caspase-9 activity which is involved apoptotic processes in BmN-SWU1 silkworm B. mori cells.
PLOS ONE | 2015
Zhan-Qi Dong; Nan Hu; Jun Zhang; Ting-Ting Chen; Ming-Ya Cao; Hai-Qing Li; Xue-jiao Lei; Peng Chen; Cheng Lu; Min-Hui Pan
We have previously reported that baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) late expression factor 11 (lef-11) is associated with viral DNA replication and have demonstrated that it potentially interacts with itself; however, whether LEF-11 forms oligomers and the impact of LEF-11 oligomerization on viral function have not been substantiated. In this study, we first demonstrated that LEF-11 is capable of forming oligomers. Additionally, a series of analyses using BmNPV LEF-11 truncation mutants indicated that two distinct domains control LEF-11 oligomerization (aa 42–61 and aa 72–101). LEF-11 truncation constructs were inserted into a lef-11-knockout BmNPV bacmid, which was used to demonstrate that truncated LEF-11 lacking either oligomerization domain abrogates viral DNA replication. Finally, site-directed mutagenesis was used to determine that the conserved hydrophobic residues Y58&I59 (representing Y58 and I59), I85 and L88&L89 (representing L88 and L89) are required for LEF-11 oligomerization and viral DNA replication. Collectively, these data indicate that BmNPV LEF-11 oligomerization influences viral DNA replication.