Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Min Miao is active.

Publication


Featured researches published by Min Miao.


Nature Communications | 2013

Draft genome of the kiwifruit Actinidia chinensis

Shengxiong Huang; Jian Ding; Dejing Deng; Wei Tang; Honghe Sun; Dongyuan Liu; Lei Zhang; Xiangli Niu; Xia Zhang; Meng Meng; Jinde Yu; Jia Liu; Yi Han; Wei Shi; Danfeng Zhang; Shuqing Cao; Zhao-Jun Wei; Yongliang Cui; Yanhua Xia; Huaping Zeng; Kan Bao; Lin Lin; Ya Min; Hua Zhang; Min Miao; Xiaofeng Tang; Yunye Zhu; Yuan Sui; Guangwei Li; Hanju Sun

The kiwifruit (Actinidia chinensis) is an economically and nutritionally important fruit crop with remarkably high vitamin C content. Here we report the draft genome sequence of a heterozygous kiwifruit, assembled from ~140-fold next-generation sequencing data. The assembled genome has a total length of 616.1 Mb and contains 39,040 genes. Comparative genomic analysis reveals that the kiwifruit has undergone an ancient hexaploidization event (γ) shared by core eudicots and two more recent whole-genome duplication events. Both recent duplication events occurred after the divergence of kiwifruit from tomato and potato and have contributed to the neofunctionalization of genes involved in regulating important kiwifruit characteristics, such as fruit vitamin C, flavonoid and carotenoid metabolism. As the first sequenced species in the Ericales, the kiwifruit genome sequence provides a valuable resource not only for biological discovery and crop improvement but also for evolutionary and comparative genomics analysis, particularly in the asterid lineage.


New Phytologist | 2013

SlNAC1, a stress‐related transcription factor, is fine‐tuned on both the transcriptional and the post‐translational level

Weizao Huang; Min Miao; Joanna Kud; Xiangli Niu; Bo Ouyang; Junhong Zhang; Zhibiao Ye; Joseph C. Kuhl; Yongsheng Liu; Fangming Xiao

The plant-specific NAC (NAM, ATAF1,2, CUC2) transcription factors play significant roles in diverse physiological processes. In this study, we determined the regulation of a stress-related tomato (Solanum lycopersicum) NAC1 (SlNAC1) transcription factor at both the transcriptional and the post-translational level. The SlNAC1 protein was found to be stable in the presence of proteasome-specific inhibitor MG132 or MG115 and ubiquitinated in plant cells, suggesting that the SlNAC1 is subject to the ubiquitin-proteasome system-mediated degradation. Deletion analysis identified a short segment of 10 amino acids (aa261-270) that was required for ubiquitin-proteasome system-mediated degradation, among which two leucine residues (L268 and L269) were critical for the protein instability of SlNAC1. Fusion of the degron (SlNAC1(191-270) ) containing these 10 amino acids to green fluorescent protein was found to be sufficient to trigger the degradation of the fusion protein. In addition, the SlNAC1 gene is strongly upregulated during Pseudomonas infection, while repression of the NAC1 ortholog in Nicotiana benthamiana resulted in enhanced susceptibility to Pseudomonas bacteria. These results suggest that rapid upregulation of the NAC1 gene resulting in more protein production is likely one of the strategies plants use to defend themselves against pathogen infection.


PLOS ONE | 2012

A Role of Tomato UV-Damaged DNA Binding Protein 1 (DDB1) in Organ Size Control via an Epigenetic Manner

Jikai Liu; Xiaofeng Tang; Lanyang Gao; Yongfeng Gao; Yuxiang Li; Shengxiong Huang; Xiaochun Sun; Min Miao; Hui Zeng; Xuefen Tian; Xiangli Niu; Lei Zheng; James J. Giovannoni; Fangming Xiao; Yongsheng Liu

Epigenetic modification generally refers to phenotypic changes by a mechanism other than changes in DNA sequence and plays a significant role in developmental processes. In this study, we found that overexpression of one alternatively spliced tomato DDB1 transcript, DDB1F that is prevalently present in all tested tissues, resulted in reduction of organ size. Transgenic plants constitutively expressing the DDB1F from a strong cauliflower mosaic virus (CaMV) 35S promoter displayed moderately reduced size in vegetative organs (leaves and stems) and radically decreased size in reproductive organs (flowers, seeds and fruits), in which several genes encoding negative regulators for cell division were upregulated. Significantly, reduction of organ size conferred by overexpression of DDB1F transgene appears not to segregate in the subsequent generations, suggesting the phenotypic alternations are manipulated in an epigenetic manner and can be transmitted over generations. This notion was further substantiated by analysis of DNA methylation level at the SlWEE1 gene (encoding a negative regulator of cell division), revealing a correlation between less methylation in the promoter region and elevated expression level of this gene. Thus, our results suggest DDB1 plays an important role in regulation of the epigenetic state of genes involved in organogenesis, despite the underlying mechanism remains to be elucidated.


Molecular Plant Pathology | 2012

The tomato UV-damaged DNA-binding protein-1 (DDB1) is implicated in pathogenesis-related (PR) gene expression and resistance to Agrobacterium tumefaciens

Jikai Liu; Hanjing Li; Min Miao; Xiaofeng Tang; James J. Giovannoni; Fangming Xiao; Yongsheng Liu

Plants defend themselves against potential pathogens via the recognition of pathogen-associated molecular patterns (PAMPs). However, the molecular mechanisms underlying this PAMP-triggered immunity (PTI) are largely unknown. In this study, we show that tomato HP1/DDB1, coding for a key component of the CUL4-based ubiquitin E3 ligase complex, is required for resistance to Agrobacterium tumefaciens. We found that the DDB1-deficient mutant (high pigment-1, hp1) is susceptible to nontumorigenic A. tumefaciens. The efficiency of callus generation from the hp1 cotyledons was extremely low as a result of the necrosis caused by Agrobacterium infection. On infiltration of nontumorigenic A. tumefaciens into leaves, the hp1 mutant moderately supported Agrobacterium growth and developed disease symptoms, but the expression of the pathogenesis-related gene SlPR1a1 and several PTI marker genes was compromised at different levels. Moreover, exogenous application of salicylic acid (SA) triggered SlPR1a1 gene expression and enhanced resistance to A. tumefaciens in wild-type tomato plants, whereas these SA-regulated defence responses were abolished in hp1 mutant plants. Thus, HP1/DDB1 may function through interaction with the SA-regulated PTI pathway in resistance against Agrobacterium infection.


New Phytologist | 2016

Ubiquitin‐conjugated degradation of golden 2‐like transcription factor is mediated by CUL4‐DDB1‐based E3 ligase complex in tomato

Xiaofeng Tang; Min Miao; Xiangli Niu; Danfeng Zhang; Xulv Cao; Xichen Jin; Yunye Zhu; Youhong Fan; Hongtao Wang; Ying Liu; Yuan Sui; Wenjie Wang; Anquan Wang; Fangming Xiao; James J. Giovannoni; Yongsheng Liu

CULLIN4-RING ubiquitin ligases (CRL4s) as well as their targets are fundamental regulators functioning in many key developmental and stress responses in eukaryotes. In tomato (Solanum lycopersicum), molecular cloning has revealed that the underlying genes of natural spontaneous mutations high pigment 1 (hp1), high pigment 2 (hp2) and uniform ripening (u) encode UV-DAMAGED DNA BINDING PROTEIN 1 (DDB1), DE-ETIOLATED 1 (DET1) and GOLDEN 2-LIKE (GLK2), respectively. However, the molecular basis of the opposite actions of tomato GLK2 vs CUL4-DDB1-DET1 complex on regulating plastid level and fruit quality remains unknown. Here, we provide molecular evidence showing that the tomato GLK2 protein is a substrate of the CUL4-DDB1-DET1 ubiquitin ligase complex for the proteasome degradation. SlGLK2 is degraded by the ubiquitin-proteasome system, which is mainly determined by two lysine residues (K11 and K253). SlGLK2 associates with the CUL4-DDB1-DET1 E3 complex in plant cells. Genetically impairing CUL4, DDB1 or DET1 results in a retardation of SlGLK2 degradation by the 26S proteasome. These findings are relevant to the potential of nutrient accumulation in tomato fruit by mediating the plastid level and contribute to a deeper understanding of an important regulatory loop, linking protein turnover to gene regulation.


Scientific Reports | 2016

PTIR: Predicted Tomato Interactome Resource

Junyang Yue; Wei Xu; Rongjun Ban; Shengxiong Huang; Min Miao; Xiaofeng Tang; Guoqing Liu; Yongsheng Liu

Protein-protein interactions (PPIs) are involved in almost all biological processes and form the basis of the entire interactomics systems of living organisms. Identification and characterization of these interactions are fundamental to elucidating the molecular mechanisms of signal transduction and metabolic pathways at both the cellular and systemic levels. Although a number of experimental and computational studies have been performed on model organisms, the studies exploring and investigating PPIs in tomatoes remain lacking. Here, we developed a Predicted Tomato Interactome Resource (PTIR), based on experimentally determined orthologous interactions in six model organisms. The reliability of individual PPIs was also evaluated by shared gene ontology (GO) terms, co-evolution, co-expression, co-localization and available domain-domain interactions (DDIs). Currently, the PTIR covers 357,946 non-redundant PPIs among 10,626 proteins, including 12,291 high-confidence, 226,553 medium-confidence, and 119,102 low-confidence interactions. These interactions are expected to cover 30.6% of the entire tomato proteome and possess a reasonable distribution. In addition, ten randomly selected PPIs were verified using yeast two-hybrid (Y2H) screening or a bimolecular fluorescence complementation (BiFC) assay. The PTIR was constructed and implemented as a dedicated database and is available at http://bdg.hfut.edu.cn/ptir/index.html without registration.


Molecular Plant | 2012

Plant programmed cell death caused by an autoactive form of Prf is suppressed by co-expression of the Prf LRR domain.

Xinran Du; Min Miao; Xin-Rong Ma; Yongsheng Liu; Joseph C. Kuhl; Gregory B. Martin; Fangming Xiao

In tomato, the NBARC-LRR resistance (R) protein Prf acts in concert with the Pto or Fen kinase to determine immunity against Pseudomonas syringae pv. tomato (Pst). Prf-mediated defense signaling is initiated by the recognition of two sequence-unrelated Pst-secreted effector proteins, AvrPto and AvrPtoB, by tomato Pto or Fen. Prf detects these interactions and activates signaling leading to host defense responses including localized programmed cell death (PCD) that is associated with the arrest of Pst growth. We found that Prf variants with single amino acid substitutions at D1416 in the IHD motif (isoleucine-histidine-aspartic acid) in the NBARC domain cause effector-independent PCD when transiently expressed in leaves of Nicotiana benthamiana, suggesting D1416 plays an important role in activation of Prf. The N-terminal region of Prf (NPrf) and the LRR domain are required for this autoactive Prf cell death signaling but dispensable for accumulation of the Prf(D1416V) protein. Significantly, co-expression of the Prf LRR but not NPrf, with Prf(D1416V), AvrPto/Pto, AvrPtoB/Pto, an autoactive form of Pto (Pto(Y207D)), or Fen completely suppresses PCD. However, the Prf LRR does not interfere with PCD caused by Rpi-blb1(D475V), a distinct R protein-mediated PCD signaling event, or that caused by overexpression of MAPKKKα, a protein acting downstream of Prf. Furthermore, we found the Prf(D1416V) protein is unable to accumulate in plant cells when co-expressed with the Prf LRR domain, likely explaining the cell death suppression. The mechanism for the LRR-induced degradation of Prf(D1416V) is unknown but may involve interference in the intramolecular interactions of Prf or to binding of the unattached LRR to other host proteins that are needed for Prf stability.


Biochemical and Biophysical Research Communications | 2014

The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

Min Miao; Yunye Zhu; Maiju Qiao; Xiaofeng Tang; Wei Zhao; Fangming Xiao; Yongsheng Liu

CULLIN4(CUL4)-DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1-CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4-DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4-DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4-DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato.


New Phytologist | 2016

Tomato MBD5, a methyl CpG binding domain protein, physically interacting with UV-damaged DNA binding protein-1, functions in multiple processes.

Yuxiang Li; Heng Deng; Min Miao; Huirong Li; Shengxiong Huang; Songhu Wang; Yongsheng Liu

In tomato (Solanum lycopersicum), high pigment mutations (hp-1 and hp-2) were mapped to genes encoding UV-damaged DNA binding protein 1 (DDB1) and de-etiolated-1 (DET1), respectively. Here we characterized a tomato methyl-CpG-binding domain protein SlMBD5 identified by yeast two-hybrid screening using SlDDB1 as a bait. Yeast two-hybrid assay demonstrated that the physical interaction of SlMBD5 with SlDDB1 is mediated by the C-termini of SlMBD5 and the β-propeller-C (BPC) of SlDDB1. Co-immunoprecipitation analyses revealed that SlMBD5 associates with SlDDB1-interacting partners including SlDET1, SlCUL4, SlRBX1a and SlRBX1b in vivo. SlMBD5 was shown to target to nucleus and dimerizes via its MBD motif. Electrophoresis mobility shift analysis suggested that the MBD of SlMBD5 specifically binds to methylated CpG dinucleotides but not to methylated CpHpG or CpHpH dinucleotides. SlMBD5 expressed in protoplast is capable of activating transcription of CG islands, whereas CUL4/DDB1 antagonizes this effect. Overexpressing SlMBD5 resulted in diverse developmental alterations including darker green fruits with increased plastid level and elevated pigmentation, as well as enhanced expression of SlGLK2, a key regulator of plastid biogenesis. Taken together, we hypothesize that the physical interaction of SlMBD5 with the CUL4-DDB1-DET1 complex component may affect its binding activity to methylated DNA and subsequently attenuate its transcription activation of downstream genes.


Plant Signaling & Behavior | 2012

Roles of UV-damaged DNA binding protein 1 (DDB1) in epigenetically modifying multiple traits of agronomic importance in tomato

Xiaofeng Tang; Jikai Liu; Shengxiong Huang; Wei Shi; Min Miao; Dan feng Tang; Xiangli Niu; Fangming Xiao; Yongsheng Liu

Epigenetic regulation participates broadly in many fundamentally cellular and physiological processes. In this study, we found that DDB1, a protein originally identified as a factor involved in DNA repairing, plays important roles in regulating organ size, growth habit and photosynthesis in tomato via an epigenetic manner. We generated transgenic tomato plants overexpressing an alternatively spliced DDB1 transcript (DDB1F, prevalently present in tomato tissues) and found the primary transformants displayed small-fruited “cherry tomato” in companion with strikingly enhanced shoot branching and biomass, dark-green leaves with elevated chlorophyll accumulation, and increased soluble solids in fruits. Significantly, these phenotypic alterations did not segregate with the DDB1F transgene in subsequent generations, suggesting that the effect of DDB1F on multiple agronomic traits is implemented via an epigenetic manner and is inheritable over generations. We speculate that DDB1, as a core subunit in the recently identified CUL4-based E3 ligase complex, mediates the 26S proteasome-dependent degradation of a large number of proteins, some of which might be required for perpetuating epigenetic marks on chromatins.

Collaboration


Dive into the Min Miao's collaboration.

Top Co-Authors

Avatar

Yongsheng Liu

Hefei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Xiaofeng Tang

Hefei University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiangli Niu

Hefei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Shengxiong Huang

Hefei University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junyang Yue

Hefei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yunye Zhu

Hefei University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James J. Giovannoni

Boyce Thompson Institute for Plant Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge