Min Seuk Kim
Wonkwang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Min Seuk Kim.
Journal of Cell Biology | 2013
Archana Jha; Malini Ahuja; József Maléth; Claudia M. Moreno; Joseph P. Yuan; Min Seuk Kim; Shmuel Muallem
Two distinct lobes in the C-terminal inhibitory domain in STIM1 determine access of the inhibitor SARAF to the activating SOAR domain to regulate the slow Ca2+-dependent inactivation of Orai1.
Handbook of experimental pharmacology | 2014
Seok Choi; József Maléth; Archana Jha; Kyu Pil Lee; Min Seuk Kim; Insuk So; Malini Ahuja; Shmuel Muallem
Ca(2+) signaling entails receptor-stimulated Ca(2+) release from the ER stores that serves as a signal to activate Ca(2+) influx channels present at the plasma membrane, the store-operated Ca(2+) channels (SOCs). The two known SOCs are the Orai and TRPC channels. The SOC-dependent Ca(2+) influx mediates and sustains virtually all Ca(2+)-dependent regulatory functions. The signal that transmits the Ca(2+) content of the ER stores to the plasma membrane is the ER resident, Ca(2+)-binding protein STIM1. STIM1 is a multidomain protein that clusters and dimerizes in response to Ca(2+) store depletion leading to activation of Orai and TRPC channels. Activation of the Orais by STIM1 is obligatory for their function as SOCs, while TRPC channels can function as both STIM1-dependent and STIM1-independent channels. Here we discuss the different mechanisms by which STIM1 activates the Orai and TRPC channels, the emerging specific and non-overlapping physiological functions of Ca(2+) influx mediated by the two channel types, and argue that the TRPC channels should be the preferred therapeutic target to control the toxic effect of excess Ca(2+) influx.
Annals of Neurology | 2014
Maurizio De Fusco; Riccardo Vago; Pasquale Striano; Carlo Di Bonaventura; Federico Zara; Davide Mei; Min Seuk Kim; Shmuel Muallem; Yunjia Chen; Qin Wang; Renzo Guerrini; Giorgio Casari
Autosomal dominant cortical myoclonus and epilepsy (ADCME) is characterized by distal, fairly rhythmic myoclonus and epilepsy with variable severity. We have previously mapped the disease locus on chromosome 2p11.1‐q12.2 by genome‐wide linkage analysis. Additional pedigrees affected by similar forms of epilepsy have been associated with chromosomes 8q, 5p, and 3q, but none of the causing genes has been identified. We aim to identify the mutant gene responsible for this form of epilepsy.
PLOS ONE | 2014
Jeong-Tae Yeon; Kwang-Jin Kim; Sik-Won Choi; Seong-Hee Moon; Young Sik Park; Byung Jun Ryu; Jaemin Oh; Min Seuk Kim; Munkhsoyol Erkhembaatar; Young-Jin Son; Seong Hwan Kim
Background A decrease of bone mass is a major risk factor for fracture. Several natural products have traditionally been used as herbal medicines to prevent and/or treat bone disorders including osteoporosis. Praeruptorin A is isolated from the dry root extract of Peucedanum praeruptorum Dunn and has several biological activities, but its anti-osteoporotic activity has not been studied yet. Materials and Methods The effect of praeruptorin A on the differentiation of bone marrow–derived macrophages into osteoclasts was examined by phenotype assay and confirmed by real-time PCR and immunoblotting. The involvement of NFATc1 in the anti-osteoclastogenic action of praeruptorin A was evaluated by its lentiviral ectopic expression. Intracellular Ca2+ levels were also measured. Results Praeruptorin A inhibited the RANKL-stimulated osteoclast differentiation accompanied by inhibition of p38 and Akt signaling, which could be the reason for praeruptorin A-downregulated expression levels of c-Fos and NFATc1, transcription factors that regulate osteoclast-specific genes, as well as osteoclast fusion-related molecules. The anti-osteoclastogenic effect of praeruptorin A was rescued by overexpression of NFATc1. Praeruptorin A strongly prevented the RANKL-induced Ca2+ oscillation without any changes in the phosphorylation of PLCγ. Conclusion Praeruptorin A could exhibit its anti-osteoclastogenic activity by inhibiting p38/Akt-c-Fos-NFATc1 signaling and PLCγ-independent Ca2+ oscillation.
Advances in Experimental Medicine and Biology | 2016
Dong Min Shin; Aran Son; Seonghee Park; Min Seuk Kim; Malini Ahuja; Shmuel Muallem
The Ca(2+) second messenger is initiated at ER/PM junctions and propagates into the cell interior to convey the receptor information. The signal is maintained by Ca(2+) influx across the plasma membrane through the Orai and TRPC channels. These Ca(2+) influx channels form complexes at ER/PM junctions with the ER Ca(2+) sensor STIM1, which activates the channels. The function of STIM1 is modulated by other STIM isoforms like STIM1L, STIM2 and STIM2.1/STIM2β and by SARAF, which mediates the Ca(2+)-dependent inhibition of Orai channels. The ER/PM junctions are formed at membrane contact sites by tethering proteins that generate several types of ER/PM junctions, such as PI(4,5)P2-poor and PI(4,5)P2-rich domains. This chapter discusses several properties of the TRPC channels, the Orai channels and the STIMs, their key interacting proteins and how interaction of the STIMs with the channels gates their activity. The chapter closes by highlighting open questions and potential future directions in this field.
Journal of Natural Products | 2015
Ju-Young Kim; Sun-Hyang Park; Jong Min Baek; Munkhsoyol Erkhembaatar; Min Seuk Kim; Kwon-Ha Yoon; Jae-Min Oh; Myeung Su Lee
Harpagoside (HAR) is a natural compound isolated from Harpagophytum procumbens (devils claw) that is reported to have anti-inflammatory effects; however, these effects have not been investigated in the context of bone development. The current study describes for the first time that HAR inhibits receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis in vitro and suppresses inflammation-induced bone loss in a mouse model. HAR also inhibited the formation of osteoclasts from mouse bone marrow macrophages (BMMs) in a dose-dependent manner as well as the activity of mature osteoclasts, including filamentous actin (F-actin) ring formation and bone matrix breakdown. This involved a HAR-induced decrease in extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) phosphorylation, leading to the inhibition of Syk-Btk-PLCγ2-Ca(2+) in RANKL-dependent early signaling, as well as the activation of c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1), which resulted in the down-regulation of various target genes. Consistent with these in vitro results, HAR blocked lipopolysaccharide (LPS)-induced bone loss in an inflammatory osteoporosis model. However, HAR did not prevent ovariectomy-mediated bone erosion in a postmenopausal osteoporosis model. These results suggest that HAR is a valuable agent against inflammation-related bone disorders but not osteoporosis induced by hormonal abnormalities.
EMBO Reports | 2016
Soonhong Park; Malini Ahuja; Min Seuk Kim; G. Cristina Brailoiu; Archana Jha; Mei Zeng; Maryna Baydyuk; Ling Gang Wu; Christopher A. Wassif; Forbes D. Porter; Patricia M. Zerfas; Michael A. Eckhaus; Eugen Brailoiu; Dong Min Shin; Shmuel Muallem
Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells’ functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re‐expression of TRPML1 in neurons. These features were not observed in Niemann–Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV.
Evidence-based Complementary and Alternative Medicine | 2013
Dong Ryun Gu; Jin-Ki Hwang; Munkhsoyol Erkhembaatar; Kang-Beom Kwon; Min Seuk Kim; Young-Rae Lee; Seoung Hoon Lee
Chrysanthemum zawadskii Herbich var. latilobum Kitamura, known as “Gujulcho” in Korea, has been used in traditional medicine to treat various inflammatory diseases, including rheumatoid arthritis. However, these effects have not been tested on osteoclasts, the bone resorbing cells that regulate bone metabolism. Here, we investigated the effects of C. zawadskii Herbich var. latilobum Kitamura ethanol extract (CZE) on osteoclast differentiation induced by treatment with the receptor activator of NF-κB ligand (RANKL). CZE inhibited osteoclast differentiation and formation in a dose-dependent manner. The inhibitory effect of CZE on osteoclastogenesis was due to the suppression of ERK activation and the ablation of RANKL-stimulated Ca2+-oscillation via the inactivation of PLCγ2, followed by the inhibition of CREB activation. These inhibitory effects of CZE resulted in a significant repression of c-Fos expression and a subsequent reduction of NFATc1, a key transcription factor for osteoclast differentiation, fusion, and activation in vitro and in vivo. These results indicate that CZE negatively regulates osteoclast differentiation and may be a therapeutic candidate for the treatment of various bone diseases, such as postmenopausal osteoporosis, rheumatoid arthritis, and periodontitis.
Journal of Bone and Mineral Research | 2017
Munkhsoyol Erkhembaatar; Dong Ryun Gu; Seoung Hoon Lee; Yu Mi Yang; Soonhong Park; Shmuel Muallem; Dong Min Shin; Min Seuk Kim
Lysosomal Ca2+ emerges as a critical component of receptor‐evoked Ca2+ signaling and plays a crucial role in many lysosomal and physiological functions. Lysosomal Ca2+ release is mediated by the transient receptor potential (TRP) family member TRPML1, mutations that cause the lysosomal storage disease mucolipidosis type 4. Lysosomes play a key role in osteoclast function. However, nothing is known about the role of lysosomal Ca2+ signaling in osteoclastogenesis and bone metabolism. In this study, we addressed this knowledge gap by studying the role of lysosomal Ca2+ signaling in osteoclastogenesis, osteoclast and osteoblast functions, and bone homeostasis in vivo. We manipulated lysosomal Ca2+ signaling by acute knockdown of TRPML1, deletion of TRPML1 in mice, pharmacological inhibition of lysosomal Ca2+ influx, and depletion of lysosomal Ca2+ storage using the TRPML agonist ML‐SA1. We found that knockdown and deletion of TRPML1, although it did not have an apparent effect on osteoblast differentiation and bone formation, markedly attenuated osteoclast function, RANKL‐induced cytosolic Ca2+ oscillations, inhibited activation of NFATc1 and osteoclastogenesis‐controlling genes, suppressed the formation of tartrate‐resistant acid phosphatase (TRAP)‐positive multinucleated cells (MNCs), and markedly reduced the differentiation of bone marrow–derived macrophages into osteoclasts. Moreover, deletion of TRPML1 resulted in enlarged lysosomes, inhibition of lysosomal secretion, and attenuated the resorptive activity of mature osteoclasts. Notably, depletion of lysosomal Ca2+ with ML‐SA1 similarly abrogated RANKL‐induced Ca2+ oscillations and MNC formation. Deletion of TRPML1 in mice reduced the TRAP‐positive bone surfaces and impaired bone remodeling, resulting in prominent osteopetrosis. These findings demonstrate the essential role of lysosomal Ca2+ signaling in osteoclast differentiation and mature osteoclast function, which play key roles in bone homeostasis.
Experimental and Therapeutic Medicine | 2017
Jeong‑Mi Kim; Munkhsoyol Erkhembaatar; Guem San Lee; Jin‑Hyun Lee; Eun‑Mi Noh; Minok Lee; Hyun‑Kyung Song; Choong Hun Lee; Kang Beom Kwon; Min Seuk Kim; Young‑Rae Lee
The constituents of Peucedanum japonicum Thunb. (PJ) exhibit biological and pharmacological activities, including anti-obesity, anti-oxidant and anti-allergic activities. The aim of the present study was to examine in vitro effects of PJ in RANKL-induced signaling pathways, which determine osteoclast differentiation. PJ ethanol extract (PEE) exhibited anti-osteoporotic activity by disrupting the phospholipase C (PLC)-Ca2+-c-Fos/cAMP response element-binding protein (CREB)-nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling pathway during osteoclastogenesis. Murine bone marrow-derived macrophages (BMMs) were cultured and used to determine the effects of PJ in the receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclastogenesis. The effects of PEE in the RANKL-mediated signaling cascade were evaluated using a standard in vitro osteoclastogenesis system. PEE treatment of BMMs significantly reduced the number of RANKL-mediated tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells (P<0.05 for 5 and 10 µg/ml PEE, P<0.01 for 25 and 50 µg/ml PEE), without cytotoxic effects. Furthermore, the expression of differentiation-related marker genes, including TRAP, Oscar, Cathepsin K, dendrocyte expressed seven transmembrane protein, ATPase H+ Transporting V0 Subunit D2 and NFATc1, were markedly suppressed. PEE induced a transient increase in free cytoplasmic Ca2+ ([Ca2+]i) mobilization via voltage-gated Ca2+ channels and PLC-sensitive pathways. Transient [Ca2+]i increase consequently resulted in the suppression of c-Fos, CREB and NFATc1 activities. These findings highlight the potential use of PJ in treating bone disorders caused by osteoclast overgrowth.