Min Tang
Chinese Ministry of Education
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Min Tang.
Journal of Bone and Mineral Research | 2010
Liang Chen; Wei Jiang; Jiayi Huang; Bai-Cheng He; Guo-Wei Zuo; Wenli Zhang; Qing Luo; Qiong Shi; Bing-Qiang Zhang; Eric R. Wagner; Jinyong Luo; Min Tang; Christian Wietholt; Xiaoji Luo; Yang Bi; Yuxi Su; Bo Liu; Stephanie H. Kim; Connie J. He; Yawen Hu; Jikun Shen; Farbod Rastegar; Enyi Huang; Yanhong Gao; Jian-Li Gao; Jian-Zhong Zhou; Russell R. Reid; Hue H. Luu; Rex C. Haydon; Tong-Chuan He
Efficient osteogenic differentiation and bone formation from mesenchymal stem cells (MSCs) should have clinical applications in treating nonunion fracture healing. MSCs are adherent bone marrow stromal cells that can self‐renew and differentiate into osteogenic, chondrogenic, adipogenic, and myogenic lineages. We have identified bone morphogenetic protein 9 (BMP‐9) as one of the most osteogenic BMPs. Here we investigate the effect of insulin‐like growth factor 2 (IGF‐2) on BMP‐9‐induced bone formation. We have found that endogenous IGF‐2 expression is low in MSCs. Expression of IGF‐2 can potentiate BMP‐9‐induced early osteogenic marker alkaline phosphatase (ALP) activity and the expression of later markers. IGF‐2 has been shown to augment BMP‐9‐induced ectopic bone formation in the stem cell implantation assay. In perinatal limb explant culture assay, IGF‐2 enhances BMP‐9‐induced endochondral ossification, whereas IGF‐2 itself can promote the expansion of the hypertropic chondrocyte zone of the cultured limb explants. Expression of the IGF antagonists IGFBP3 and IGFBP4 leads to inhibition of the IGF‐2 effect on BMP‐9‐induced ALP activity and matrix mineralization. Mechanistically, IGF‐2 is further shown to enhance the BMP‐9‐induced BMPR‐Smad reporter activity and Smad1/5/8 nuclear translocation. PI3‐kinase (PI3K) inhibitor LY294002 abolishes the IGF‐2 potentiation effect on BMP‐9‐mediated osteogenic signaling and can directly inhibit BMP‐9 activity. These results demonstrate that BMP‐9 crosstalks with IGF‐2 through PI3K/AKT signaling pathway during osteogenic differentiation of MSCs. Taken together, our findings suggest that a combination of BMP‐9 and IGF‐2 may be explored as an effective bone‐regeneration agent to treat large segmental bony defects, nonunion fracture, and/or osteoporotic fracture.
Journal of Cellular and Molecular Medicine | 2009
Ni Tang; Wen-Xin Song; Jinyong Luo; Xiaoji Luo; Jin Chen; Katie A. Sharff; Yang Bi; Bai-Cheng He; Jiayi Huang; Gao-Hui Zhu; Yuxi Su; Wei Jiang; Min Tang; Yun He; Yi Wang; Liang Chen; Guo-Wei Zuo; Jikun Shen; Xiaochuan Pan; Russell R. Reid; Hue H. Luu; Rex C. Haydon; Tong-Chuan He
Bone morphogenetic protein 9 (BMP‐9) is a member of the transforming growth factor (TGF)‐β/BMP superfamily, and we have demonstrated that it is one of the most potent BMPs to induce osteoblast differentiation of mesenchymal stem cells (MSCs). Here, we sought to investigate if canonical Wnt/β‐catenin signalling plays an important role in BMP‐9‐induced osteogenic differentiation of MSCs. Wnt3A and BMP‐9 enhanced each other’s ability to induce alkaline phosphatase (ALP) in MSCs and mouse embryonic fibroblasts (MEFs). Wnt antagonist FrzB was shown to inhibit BMP‐9‐induced ALP activity more effectively than Dkk1, whereas a secreted form of LPR‐5 or low‐density lipoprotein receptor‐related protein (LRP)‐6 exerted no inhibitory effect on BMP‐9‐induced ALP activity. β‐Catenin knockdown in MSCs and MEFs diminished BMP‐9‐induced ALP activity, and led to a decrease in BMP‐9‐induced osteocalcin reporter activity and BMP‐9‐induced expression of late osteogenic markers. Furthermore, β‐catenin knockdown or FrzB overexpression inhibited BMP‐9‐induced mineralization in vitro and ectopic bone formation in vivo, resulting in immature osteogenesis and the formation of chondrogenic matrix. Chromatin immunoprecipitation (ChIP) analysis indicated that BMP‐9 induced recruitment of both Runx2 and β‐catenin to the osteocalcin promoter. Thus, we have demonstrated that canonical Wnt signalling, possibly through interactions between β‐catenin and Runx2, plays an important role in BMP‐9‐induced osteogenic differentiation of MSCs.
Journal of Biological Chemistry | 2010
Jinyong Luo; Min Tang; Jiayi Huang; Bai-Cheng He; Jian-Li Gao; Liang Chen; Guo-Wei Zuo; Wenli Zhang; Qing Luo; Qiong Shi; Bing-Qiang Zhang; Yang Bi; Xiaoji Luo; Wei Jiang; Yuxi Su; Jikun Shen; Stephanie H. Kim; Enyi Huang; Yanhong Gao; Jian-Zhong Zhou; Ke Yang; Hue H. Luu; Xiaochuan Pan; Rex C. Haydon; Zhong-Liang Deng; Tong-Chuan He
Mesenchymal stem cells (MSCs) are bone marrow stromal cells that can differentiate into multiple lineages. We previously demonstrated that BMP9 is one of the most potent BMPs to induce osteogenic differentiation of MSCs. BMP9 is one of the least studied BMPs. Whereas ALK1, ALK5, and/or endoglin have recently been reported as potential BMP9 type I receptors in endothelial cells, little is known about type I receptor involvement in BMP9-induced osteogenic differentiation in MSCs. Here, we conduct a comprehensive analysis of the functional role of seven type I receptors in BMP9-induced osteogenic signaling in MSCs. We have found that most of the seven type I receptors are expressed in MSCs. However, using dominant-negative mutants for the seven type I receptors, we demonstrate that only ALK1 and ALK2 mutants effectively inhibit BMP9-induced osteogenic differentiation in vitro and ectopic ossification in MSC implantation assays. Protein fragment complementation assays demonstrate that ALK1 and ALK2 directly interact with BMP9. Likewise, RNAi silencing of ALK1 and ALK2 expression inhibits BMP9-induced BMPR-Smad activity and osteogenic differentiation in MSCs both in vitro and in vivo. Therefore, our results strongly suggest that ALK1 and ALK2 may play an important role in mediating BMP9-induced osteogenic differentiation. These findings should further aid us in understanding the molecular mechanism through which BMP9 regulates osteogenic differentiation of MSCs.
Journal of Cellular Biochemistry | 2009
Yang Bi; Jiayi Huang; Yun He; Gao-Hui Zhu; Yuxi Su; Bai-Cheng He; Jinyong Luo; Yi Wang; Quan Kang; Qing Luo; Liang Chen; Guo-Wei Zuo; Wei Jiang; Bo Liu; Qiong Shi; Min Tang; Bing-Qiang Zhang; Yaguang Weng; Ailong Huang; Lan Zhou; Tao Feng; Hue H. Luu; Rex C. Haydon; Tong-Chuan He; Ni Tang
Wnt/β‐catenin pathway plays an important role in regulating embryonic development. Hepatocytes differentiate from endoderm during development. Hepatic progenitor cells (HPCs) have been isolated from fetal liver and extrahepatic tissues. Most current studies in liver development and hepatic differentiation have been focused on Wnts, β‐catenin, and their receptors. Here, we sought to determine the role of Wnt antagonists in regulating hepatic differentiation of fetal liver‐derived HPCs. Using mouse liver tissues derived from embryonic day E12.5 to postnatal day (PD) 28, we found that 13 of the 19 Wnt genes and almost all of Wnt receptors/co‐receptors were expressed in most stages. However, Wnt antagonists SFRP2, SFRP3, and Dkk2 were only detected in the early stages. We established and characterized the reversible stable HPCs derived from E14.5 mouse fetal liver (HP14.5). HP14.5 cells were shown to express high levels of early liver progenitor cell markers, but low levels or none of late liver markers. HP14.5 cells were shown to differentiate into mature hepatocytes upon dexamethasone (Dex) stimulation. Dex‐induced late marker expression and albumin promoter activity in HP14.5 cells were inhibited by exogenous expression of SFRP3. Furthermore, Dex‐induced glycogen synthesis of PAS‐positive HP14.5 cells was significantly inhibited by SFRP3. Therefore, our results have demonstrated that the expression of Wnt antagonists decreases as hepatic differentiation progresses, suggesting that a balanced Wnt signaling may be critical during mouse liver development and hepatic differentiation. J. Cell. Biochem. 108: 295–303, 2009.
PLOS ONE | 2012
Yingze Zhao; Tao Song; Wenjuan Wang; Jin Wang; Juanwen He; Ningning Wu; Min Tang; Baicheng He; Jinyong Luo
Although previous studies have demonstrated that BMP9 is highly capable of inducing osteogenic differentiation and bone formation, the precise molecular mechanism involved remains to be fully elucidated. In this current study, we explore the possible involvement and detail effects of p38 and ERK1/2 MAPKs on BMP9-indcued osteogenic differentiation of mesenchymal progenitor cell (MPCs). We find that BMP9 simultaneously stimulates the activation of p38 and ERK1/2 in MPCs. BMP9-induced early osteogenic marker, such as alkaline phosphatase (ALP), and late osteogenic markers, such as matrix mineralization and osteocalcin (OC) are inhibited by p38 inhibitor SB203580, whereas enhanced by ERK1/2 inhibitor PD98059. BMP9-induced activation of Runx2 and Smads signaling are reduced by SB203580, and yet increased by PD98059 in MPCs. The in vitro effects of inhibitors are reproduced with adenoviruses expressing siRNA targeted p38 and ERK1/2, respectively. Using mouse calvarial organ culture and subcutaneous MPCs implantation, we find that inhibition of p38 activity leads to significant decrease in BMP9-induced osteogenic differentiation and bone formation, however, blockage of ERK1/2 results in effective increase in BMP9-indcued osteogenic differentiation in vivo. Together, our results reveal that p38 and ERK1/2 MAPKs are activated in BMP9-induced osteogenic differentiation of MPCs. What is most noteworthy, however, is that p38 and ERK1/2 act in opposition to regulate BMP9-induced osteogenic differentiation of MPCs.
Journal of Cancer Research and Clinical Oncology | 2011
Ke Wang; Honglei Feng; Wei Ren; Xiaoxiao Sun; Jinyong Luo; Min Tang; Lan Zhou; Yaguang Weng; Tong-Chuan He; Yan Zhang
BackgroundTransforming growth factor-β (TGF-β) is known to promote tumor proliferation, migration, invasion, and metastasis. Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily. Several BMPs (BMP2 and BMP7) can enhance the invasion and bone metastasis of breast cancer cells. The function of BMP9, the latest discovered and most powerful osteogenetic factor, in breast cancer has not been fully elucidated.MethodsBMP9 expression in twenty-three breast cancer patients and three breast cancer cell line types was detected by reverse transcriptase polymerase chain reaction. Changes in proliferation, apoptosis, invasion, and migration in the recombinant MDA-MB-231/BMP9 cells were detected using various assays. The assays were MTT, flow cytometry, colony forming, cell wounding, and transwell invasion. Proliferating cell nuclear antigen and terminal deoxynucleotidy transferase biotin-dUTP nick end labeling staining methods were conducted to detect whether BMP9 affected proliferation and apoptosis in xenogenic mouse models.ResultsTwenty-one of the twenty-three breast cancer patients had amplified BMP9 mRNA transcripts in adjacent non-tumor tissues, although BMP9 was observed in the breast cancer tissue of two patients, its expression was higher in the adjacent non-tumor tissues. BMP9 overexpression inhibited the proliferation, migration, and invasion, as well as induced the apoptosis of the breast cancer cell line MDA-MB-231 in vitro. BMP9 also inhibited tumor growth and induced apoptosis significantly in the xenogenic mouse models.ConclusionsDecreased BMP9 expression is associated with the elevated proliferation and migration of human breast cancer. BMP9 can inhibit the growth, invasion, and migration of breast cancer cells in vitro and in vivo. BMP9 is a putative tumor suppressor in breast cancer.
PLOS ONE | 2013
Liang Duan; Rui Wu; Liwei Ye; Haiyan Wang; Xia Yang; Yunyuan Zhang; Xian Chen; Guo-Wei Zuo; Yan Zhang; Yaguang Weng; Jinyong Luo; Min Tang; Qiong Shi; Tong-Chuan He; Lan Zhou
Background and Objective S100A8 and S100A9, two members of the S100 protein family, have been reported in association with the tumor cell differentiation and tumor progression. Previous study has showed that their expression in stromal cells of colorectal carcinoma (CRC) is associated with tumor size. Here, we investigated the clinical significances of S100A8 and S100A9 in tumor cells of CRC and their underlying molecular mechanisms. Methods Expression of S100A8 and S100A9 in colorectal carcinoma and matching distal normal tissues were measured by reverse transcriptase polymerase chain reaction (RT-PCR), immunohistochemistry and western blot. CRC cell lines treated with the recombinant S100A8 and S100A9 proteins were used to analyze the roles and molecular mechanisms of the two proteins in CRC in vitro. Results S100A8 and S100A9 were elevated in more than 50% of CRC tissues and their expression in tumor cells was associated with differentiation, Dukes stage and lymph node metastasis. The CRC cell lines treatment with recombinant S100A8 and S100A9 proteins promoted the viability and migration of CRC cells. Furthermore, the two recombinant proteins also resulted in the increased levels of β-catenin and its target genes c-myc and MMP7. β-catenin over-expression in CRC cells by Adβ-catenin increased cell viability and migration. β-catenin knock-down by Adsiβ-catenin reduced cell viability and migration. Furthermore, β-catenin knockdown also partially abolished the promotive effects of recombinant S100A8 and S100A9 proteins on the viability and migration of CRC cells. Conclusions Our work demonstrated that S100A8 and S100A9 are linked to the CRC progression, and one of the underlying molecular mechanisms is that extracellular S100A8 and S100A9 proteins contribute to colorectal carcinoma cell survival and migration via Wnt/β-catenin pathway.
International Journal of Oncology | 2013
Rui Wu; Liang Duan; Liwei Ye; Haiyang Wang; Xia Yang; Yunyuan Zhang; Xian Chen; Yan Zhang; Yaguang Weng; Jingyong Luo; Min Tang; Qiong Shi; Tong-Chuan He; Lan Zhou
The S100A9 protein, a member of the S100 protein family, is often upregulated in various types of cancer, including hepatocellular carcinoma (HCC). S100A9 acts as a danger signal when secreted to the extracellular space and is thought to play an important role during tumorigenesis. Despite this fact, little is known about the effects of S100A9 in the tumor microenvironment on HCC. Therefore, in this study, we investigated the effects of exogenous S100A9 on the proliferation and invasion of HepG2 HCC cells, as well as the molecular mechanisms underlying these effects. Our results demonstrated that exogenous S100A9 promoted the proliferation, clone formation and invasion of HepG2 cells in vitro, as shown by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltrazolium bromide (MTT), clone formation and transwell invasion assays, respectively, and also promoted tumor growth in vivo by tumorigenicity assays in nude mice. Furthermore, S100A9 increased the phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases (MAPKs) in HepG2 cells. When the phosphorylation of p38 was inhibited by SB203580 (a p38 inhibitor), the S100A9-induced cell invasion was reversed; when the phosphorylation of ERK1/2 was inhibited by PD98059 (an ERK1/2 inhibitor), the S100A9-induced cell proliferation was reversed. These data suggest that the S100A9-induced proliferation and invasion of HepG2 cells are partly mediated by the activation of the MAPK signaling pathway.
Oncology Reports | 2013
Yueliang Liu; Wenjuan Wang; Jing Xu; Li Li; Qian Dong; Qiong Shi; Guo-Wei Zuo; Lan Zhou; Yaguang Weng; Min Tang; Tong-Chuan He; Jinyong Luo
Osteosarcoma (OS) is the most common type of bone cancer. Even with early diagnosis and aggressive treatment, the prognosis for OS is poor. In the present study, we investigated the proliferation and invasion inhibitory effect of dihydroartemisinin (DHA) on human OS cells and the possible molecular mechanisms involved. We demonstrated that DHA can inhibit proliferation, decrease migration, reduce invasion and induce apoptosis in human OS cells. Using an in vivo tumor animal model, we confirmed that DHA can prevent OS formation and maintain intact bone structure in athymic mice. In addition, we examined the possible molecular mechanisms mediating the function of DHA. We found that the total protein levels and transcriptional activity of β-catenin in OS cells are reduced by DHA treatment, and this may result from the increased catalytic activity of glycogen synthase kinase 3β (GSK3β). Moreover, the inhibitory effect of DHA on OS cells is reversed by overexpression of β-catenin, but is further enhanced by knockdown of β-catenin, respectively. Collectively, our results reveal that DHA can inhibit tumor growth of OS cells by inactivating Wnt/β-catenin signaling. Therefore, DHA is a promising chemotherapy agent in the treatment of human OS.
Clinica Chimica Acta | 2014
Jing Wang; Qiong Shi; Taixian Yuan; Qi-lin Song; Yan Zhang; Qiang Wei; Lan Zhou; Jinyong Luo; Guo-Wei Zuo; Min Tang; Tong-Chuan He; Yaguang Weng
The aim of this study is to determine the value of matrix metalloproteinase 9 (MMP-9) in diagnosis of osteosarcoma (OS). A systematic review and meta-analysis was conducted using MEDLINE, Embase, ISI Web of Knowledge, the Cochrane Library, Scopus, BioMed Central, ScienceDirect, China Biomedical literature Database (CBM) and China National Knowledge Internet (CNKI) from inception through Aug 29, 2013. Articles written in English or Chinese that investigated the accuracy of MMP-9 for the diagnosis of OS were included. Pooled sensitivity, specificity and the area under the receiver operating characteristic curve (AUC) were determined. I(2) was used to test heterogeneity and source of heterogeneity was investigated by meta-regression (tested with Meta-DiSc and STATA 12.0 statistical softwares). A total of 3729 articles were retrieved, of which 18 were included, accounting for 892 patients. Overall, the pooled sensitivity, specificity and AUC were 0.78 (95% CI 0.730-0.83), 0.90 (95% CI 0.79-0.95), and 0.87 (95% CI 0.83-0.89), respectively. The studies had substantial heterogeneity (I(2)=84%, 95% CI 65-100) (96%, 95% CI 94-99). Assay kit subgroup was the main source of the heterogeneity. Although MMP-9 was identified as a potential biomarker for OS, more studies were clearly needed to establish its diagnostic value.