Minchen Yang
Wuhan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Minchen Yang.
Catalysis Science & Technology | 2017
Junqian Ding; Julan Ming; Dingze Lu; Wenhui Wu; Min Liu; Xiaona Zhao; Chunhe Li; Minchen Yang; Pengfei Fang
Visible-light-sensitive titanate nanosheets (TNSs) were synthesized with Cr2O3 successfully loaded and well dispersed on Cr(III)-TNSs by a one-step hydrothermal method for enhanced photocatalytic activity. As in our previous reports, the as-prepared samples clearly exhibited a porous flake-like structure with a large specific surface area (300–400 m2 g−1). Accompanied with the hydrothermal growth of the TNSs, the loaded Cr2O3 not only influenced the layered structure of the TNSs, but also brought about a remarkable enhancement of the visible-light response and the separation of photogenerated carriers. The XPS fitting results indicated that the Cr ions mainly existed in the trivalent form and caused a change in the binding states towards Ti and O. Based on the evaluation of the photocatalytic activity, it was found that the Cr(III)-TNSs obtained a significant improvement for RhB and K2Cr2O7 (Cr(VI)) degradation under visible-light irradiation, which was attributed to retarding the charge recombination and the effective electron transfer from Cr2O3 to TNSs. The better photocatalytic activity was obtained with an optimal content (0.5 at%) of Cr3+, and the degradation rate (Kapp) was 2.9-fold and 4.1-fold, respectively, as compared to TNSs. The samples were also evaluated in photocatalytic H2 generation with the photodeposition of Pt nanoparticles as cocatalysts. The results showed that the visible-light H2 production rate of Pt0.25/Cr(III)-TNSs (0.25 wt% of Pt) was observably enhanced under the efficient sacrificial agent/water system, giving a relatively high H2 generation rate of 473 μmol h−1 g−1 at 0.5 at% of Cr3+ content. The cyclic tests demonstrated the good stability and recycling performance of the samples. Alternative mechanisms for the visible-light-sensitive photocatalytic activity were also proposed.
Applied Catalysis B-environmental | 2016
Dingze Lu; Wuqiong Chai; Minchen Yang; Pengfei Fang; Wenhui Wu; Bin Zhao; Ruyue Xiong; Hongmei Wang
Nanoscale | 2017
Dingze Lu; Pengfei Fang; Wenhui Wu; Junqian Ding; Lulu Jiang; Xiaona Zhao; Chunhe Li; Minchen Yang; Yuanzhi Li; Dahai Wang
Applied Surface Science | 2017
Dingze Lu; Minchen Yang; Pengfei Fang; Chunhe Li; Lulu Jiang
Journal of Alloys and Compounds | 2017
Chunhe Li; Hongmei Wang; Dingze Lu; Wenhui Wu; Junqian Ding; Xiaona Zhao; Ruyue Xiong; Minchen Yang; Pei Wu; Feitai Chen; Pengfei Fang
Applied Surface Science | 2017
Dingze Lu; Pengfei Fang; Junqian Ding; Minchen Yang; Yufei Cao; Yawei Zhou; Kui Peng; Kiran Kumar Kondamareddy; Min Liu
Separation and Purification Technology | 2018
Dingze Lu; Minchen Yang; Kondamareddy Kiran Kumar; Hongmei Wang; Xiaona Zhao; Pei Wu; Pengfei Fang
Applied Surface Science | 2019
Minchen Yang; Dingze Lu; Hongmei Wang; Pei Wu; Pengfei Fang
Advanced Powder Technology | 2018
Dingze Lu; Minchen Yang; Kondamareddy Kiran Kumar; Pei Wu; Kui Peng
ACS Sustainable Chemistry & Engineering | 2018
Dingze Lu; Minchen Yang; Kondamareddy Kiran Kumar; Pei Wu; Neena D