Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mindy K. Call is active.

Publication


Featured researches published by Mindy K. Call.


Nature | 2014

ABCB5 is a limbal stem cell gene required for corneal development and repair

Bruce R. Ksander; Paraskevi E. Kolovou; Brian J. Wilson; Karim R. Saab; Qin Guo; Jie Ma; Sean P. McGuire; Meredith S. Gregory; William J. Vincent; Victor L. Perez; Fernando Cruz-Guilloty; Winston W.-Y. Kao; Mindy K. Call; Budd A. Tucker; Qian Zhan; George F. Murphy; Kira L. Lathrop; Clemens Alt; Luke J. Mortensen; Charles P. Lin; James D. Zieske; Markus H. Frank; Natasha Y. Frank

Corneal epithelial homeostasis and regeneration are sustained by limbal stem cells (LSCs), and LSC deficiency is a major cause of blindness worldwide. Transplantation is often the only therapeutic option available to patients with LSC deficiency. However, while transplant success depends foremost on LSC frequency within grafts, a gene allowing for prospective LSC enrichment has not been identified so far. Here we show that ATP-binding cassette, sub-family B, member 5 (ABCB5) marks LSCs and is required for LSC maintenance, corneal development and repair. Furthermore, we demonstrate that prospectively isolated human or murine ABCB5-positive LSCs possess the exclusive capacity to fully restore the cornea upon grafting to LSC-deficient mice in xenogeneic or syngeneic transplantation models. ABCB5 is preferentially expressed on label-retaining LSCs in mice and p63α-positive LSCs in humans. Consistent with these findings, ABCB5-positive LSC frequency is reduced in LSC-deficient patients. Abcb5 loss of function in Abcb5 knockout mice causes depletion of quiescent LSCs due to enhanced proliferation and apoptosis, and results in defective corneal differentiation and wound healing. Our results from gene knockout studies, LSC tracing and transplantation models, as well as phenotypic and functional analyses of human biopsy specimens, provide converging lines of evidence that ABCB5 identifies mammalian LSCs. Identification and prospective isolation of molecularly defined LSCs with essential functions in corneal development and repair has important implications for the treatment of corneal disease, particularly corneal blindness due to LSC deficiency.


Nature | 2005

BMP inhibition-driven regulation of six-3 underlies induction of newt lens regeneration

Matthew W. Grogg; Mindy K. Call; Mitsumasa Okamoto; M. Natalia Vergara; Katia Del Rio-Tsonis; Panagiotis A. Tsonis

Lens regeneration in adult newts is a classic example of how cells can faithfully regenerate a complete organ through the process of transdifferentiation. After lens removal, the pigment epithelial cells of the dorsal, but not the ventral, iris dedifferentiate and then differentiate to form a new lens. Understanding how this process is regulated might provide clues about why lens regeneration does not occur in higher vertebrates. The genes six-3 and pax-6 are known to induce ectopic lenses during embryogenesis. Here we tested these genes, as well as members of the bone morphogenetic protein (BMP) pathway that regulate establishment of the dorsal–ventral axis in embryos, for their ability to induce lens regeneration. We show that the lens can be regenerated from the ventral iris when the BMP pathway is inhibited and when the iris is transfected with six-3 and treated with retinoic acid. In intact irises, six-3 is expressed at higher levels in the ventral than in the dorsal iris. During regeneration, however, only expression in the dorsal iris is significantly increased. Such an increase is seen in ventral irises only when they are induced to transdifferentiate by six-3 and retinoic acid or by BMP inhibitors. These data suggest that lens regeneration can be achieved in noncompetent adult tissues and that this regeneration occurs through a gene regulatory mechanism that is more complex than the dorsal expression of lens regeneration-specific genes.


Stem Cells | 2011

From Hair to Cornea: Toward the Therapeutic Use of Hair Follicle-Derived Stem Cells in the Treatment of Limbal Stem Cell Deficiency

Ewa Meyer-Blazejewska; Mindy K. Call; Osamu Yamanaka; Hongshan Liu; Ursula Schlötzer-Schrehardt; Friedrich E. Kruse; Winston W. Kao

Limbal stem cell deficiency (LSCD) leads to severe ocular surface abnormalities that can result in the loss of vision. The most successful therapy currently being used is transplantation of limbal epithelial cell sheets cultivated from a limbal biopsy obtained from the patients healthy, contralateral eye or cadaveric tissue. In this study, we investigated the therapeutic potential of murine vibrissae hair follicle bulge‐derived stem cells (HFSCs) as an autologous stem cell (SC) source for ocular surface reconstruction in patients bilaterally affected by LSCD. This study is an expansion of our previously published work showing transdifferentiation of HFSCs into cells of a corneal epithelial phenotype in an in vitro system. In this study, we used a transgenic mouse model, K12rtTA/rtTA/tetO‐cre/ROSAmTmG, which allows for HFSCs to change color, from red to green, once differentiation to corneal epithelial cells occurs and Krt12, the corneal epithelial‐specific differentiation marker, is expressed. HFSCs were isolated from transgenic mice, amplified by clonal expansion on a 3T3 feeder layer, and transplanted on a fibrin carrier to the eye of LSCD wild‐type mice (n = 31). The HFSC transplant was able to reconstruct the ocular surface in 80% of the transplanted animals; differentiating into cells with a corneal epithelial phenotype, expressing Krt12, and repopulating the corneal SC pool while suppressing vascularization and conjunctival ingrowth. These data highlight the therapeutic properties of using HFSC to treat LSCD in a mouse model while demonstrating a strong translational potential and points to the niche as a key factor for determining stem cell differentiation. STEM CELLS 2011;29:57–66


Proceedings of the National Academy of Sciences of the United States of America | 2006

The role of Pax-6 in lens regeneration.

Mayur Madhavan; Tracy Haynes; Nicholas C. Frisch; Mindy K. Call; Craig M. Minich; Panagiotis A. Tsonis; Katia Del Rio-Tsonis

Pax-6 is a master regulator of eye development and is expressed in the dorsal and ventral iris during newt lens regeneration. We show that expression of Pax-6 during newt lens regeneration coincides with cell proliferation. By knocking down expression of Pax-6 via treatment with morpholinos, we found that proliferation of iris pigment epithelial cells was dramatically reduced both in vitro and in vivo, and, as a result, lens regeneration was significantly retarded. However, induction of dedifferentiation in the dorsal iris was not inhibited. Pax-6 knockdown early in lens regeneration resulted in inhibition of crystallin expression and retardation of lens fiber induction. Once crystallin expression and differentiation of lens fibers has ensued, however, loss of function of Pax-6 did not affect crystallin expression and lens fiber maintenance, even though the effects on proliferation persisted. These results conclusively show that Pax-6 is associated with distinct early events during lens regeneration, namely control of cell proliferation and subsequent lens fiber differentiation.


Journal of Cell Science | 2010

Lumican is required for neutrophil extravasation following corneal injury and wound healing

Yasuhito Hayashi; Mindy K. Call; Tai Ichiro Chikama; Hongshan Liu; Eric C. Carlson; Yan Sun; Eric Pearlman; James L. Funderburgh; George F. Babcock; Chia-Yang Liu; Yuichi Ohashi; Winston W.-Y. Kao

An important aspect of wound healing is the recruitment of neutrophils to the site of infection or tissue injury. Lumican, an extracellular matrix component belonging to the small leucine rich proteoglycan (SLRP) family, is one of the major keratan sulfate proteoglycans (KSPGs) within the corneal stroma. Increasing evidence indicates that lumican can serve as a regulatory molecule for several cellular processes, including cell proliferation and migration. In the present study, we addressed the role of lumican in the process of extravasation of polymorphonuclear leukocytes (PMNs) during the early inflammatory phase present in the healing of the corneal epithelium following debridement. We used Lum−/− mice and a novel transgenic mouse, Lum−/−,Kera-Lum, which expresses lumican only in the corneal stroma, to assess the role of lumican in PMN extravasation into injured corneas. Our results showed that PMNs did not readily invade injured corneas of Lum−/− mice and this defect was rescued by the expression of lumican in the corneas of Lum−/−,Kera-Lum mice. The presence of lumican in situ facilitates PMN infiltration into the peritoneal cavity in casein-induced inflammation. Our findings are consistent with the notion that in addition to regulating the collagen fibril architecture, lumican acts to aid neutrophil recruitment and invasion following corneal damage and inflammation.


Investigative Ophthalmology & Visual Science | 2011

Crosstalk between TGF-β and MAPK Signaling during Corneal Wound Healing

Kazuto Terai; Mindy K. Call; Hongshan Liu; Shizuya Saika; Chia-Yang Liu; Yasuhito Hayashi; Tai-ichiro Chikama; Jianhua Zhang; N. Terai; Candace W.-C. Kao; Winston W.-Y. Kao

PURPOSE The aim of this study was to elucidate the mechanisms governing epithelial cell migration and proliferation during wound healing. METHODS The authors used wound healing of mouse corneal epithelium to examine the role TGF-β signaling plays during the healing process. To achieve this goal, they used transgenic mice in which the TGF-β receptor type II (Tbr2) was conditionally ablated from the corneal epithelium. Epithelium debridement wounds were made, followed by the assessment of cell migration, proliferation, and immunostaining of various signaling pathway components. RESULTS The authors showed that in the absence of TGF-β signaling corneal epithelial wound healing is delayed by 48 hours; this corresponds to a delay in p38MAPK activation. Despite the delayed p38MAPK activation, ATF2, a substrate of p38MAPK, is still phosphorylated, leading to the suppression of cell proliferation at the leading edge of the wound. These data provide evidence that in the absence of TGF-β signaling, the suppression of cell proliferation during the early stages of wound healing is maintained through the JNK activation of ATF2. CONCLUSIONS; Together the data presented here demonstrate the importance of the TGF-β and MAPK signaling pathways in corneal epithelial wound healing.


FEBS Letters | 2007

Gene expression signatures in the newt irises during lens regeneration

Evgeny Makarev; Mindy K. Call; Matthew W. Grogg; Donald L. Atkinson; Brett Milash; Shannon J. Odelberg; Panagiotis A. Tsonis

Lens regeneration in adult newts is possible by transdifferentiation of the pigment epithelial cells (PECs) of the dorsal iris. The same cells in the ventral iris are not capable of such a process. To understand this difference in regenerative competency, we examined gene expression of 373 genes in the intact dorsal and ventral irises as well as in irises during the process of lens regeneration. We found similar signatures of gene expression in dorsal and ventral with several cases of even higher levels in the ventral iris. Such transcriptional activity in the regeneration‐incompetent ventral iris was unexpected and calls for a revision of our views about mechanisms of lens regeneration induction.


PLOS ONE | 2013

Lumican Binds ALK5 to Promote Epithelium Wound Healing

Osamu Yamanaka; Yong Yuan; Vivien Jane Coulson-Thomas; Tarsis F. Gesteira; Mindy K. Call; Yujin Zhang; Jianhua Zhang; Shao-Hsuan Chang; Changchun Xie; Chia-Yang Liu; Shizuya Saika; James V. Jester; Winston W. Kao

Lumican (Lum), a small leucine-rich proteoglycan (SLRP) family member, has multiple matricellular functions both as an extracellular matrix component and as a matrikine regulating cell proliferation, gene expression and wound healing. To date, no cell surface receptor has been identified to mediate the matrikine functions of Lum. This study aimed to identify a perspective receptor that mediates Lum effects on promoting wound healing. Transforming growth factor-β receptor 1 (ALK5) was identified as a potential Lum-interacting protein through in silico molecular docking and molecular dynamics. This finding was verified by biochemical pull-down assays. Moreover, the Lum function on wound healing was abrogated by an ALK5-specific chemical inhibitor as well as by ALK5 shRNAi. Finally, we demonstrated that eukaryote-specific post-translational modifications are not required for the wound healing activity of Lum, as recombinant GST-Lum fusion proteins purified from E. coli and a chemically synthesized LumC13 peptide (the last C-terminal 13 amino acids of Lum) have similar effects on wound healing in vitro and in vivo.


Development Growth & Differentiation | 2002

Expression and role of retinoic acid receptor alpha in lens regeneration

Panagiotis A. Tsonis; Melissa Tsavaris; Mindy K. Call; Roshantha A.S. Chandraratna; Katia Del Rio-Tsonis

The role of retinoids in eye development has been well studied. Retinoids and their receptors regulate gene expression and morphogenesis of the eye. In this study, a highly specific antagonist of retinoic acid receptor (RAR)‐α was used in an attempt to study its function in lens regeneration. It was found that this antagonist inhibited lens regeneration and lens fiber differentiation. It was also shown that RAR‐α is expressed in the lens during the process of regeneration. These results indicate that different RAR might have unique as well as redundant effects and patterns of expression in the regenerating lens.


Investigative Ophthalmology & Visual Science | 2013

Dexamethasone induces cross-linked actin networks in trabecular meshwork cells through noncanonical wnt signaling.

Yong Yuan; Mindy K. Call; Yan Yuan; Yujin Zhang; Katy Fischesser; Chia-Yang Liu; Winston W.-Y. Kao

PURPOSE Dexamethasone (DEX) regulates aqueous humor outflow by inducing a reorganization of the cytoskeleton to form cross-linked actin networks (CLANs) in trabecular meshwork (TM) cells. Rho-associated protein kinase (ROCK) has been demonstrated to have an important role in this process, but the upstream components leading to its activation remain elusive. The purpose of the study is to demonstrate that noncanonical Wnt signaling mediates the DEX-induced CLAN formation in TM cells. METHODS The TM cells were treated with 100 nM DEX in low serum medium for over 7 days. The medium was changed every 3 days. The cells were harvested and subjected to molecular analysis for the expression of Wnt ligands. Stress fiber structures were revealed by Phalloidin staining. Lentivirus-based shRNA against noncanonical Wnt receptor (Ror2) was used to determine the role of noncanonical Wnt signaling in DEX-induced CLAN formation. RESULTS The DEX induced stress fiber rearrangement in TM cells. A noncanonical Wnt ligand (Wnt5a) was upregulated by DEX as demonstrated by Wnt ligand degenerate PCR, real-time quantitative PCR (qRT-PCR), and Western blotting. Knocking-down Ror2, the receptor of noncanonical Wnt signaling, abolished the effects of DEX on the TM cells. CONCLUSIONS Our data suggest that DEX induces the upregulation of noncanonical Wnt ligand Wnt5a. Recombinant WNT5a protein induces CLAN formation through the noncanonical Wnt receptor ROR2/RhoA/ROCK signaling axis. Given the similarities between DEX-induced ocular hypertension and primary open-angle glaucoma, our results provide a mechanism of action for applying ROCK inhibitor to treat primary open-angle glaucoma.

Collaboration


Dive into the Mindy K. Call's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chia-Yang Liu

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yujin Zhang

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Jianhua Zhang

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Yong Yuan

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Dong

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Winston W. Kao

University of Cincinnati

View shared research outputs
Researchain Logo
Decentralizing Knowledge