Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mindy Reynolds is active.

Publication


Featured researches published by Mindy Reynolds.


Toxicology Letters | 2013

Methylmercury impairs motor function in early development and induces oxidative stress in cerebellar granule cells.

Eshan Patel; Mindy Reynolds

Environmental toxicants such as methylmercury play a critical role in the pathogenesis of many neurodevelopmental disorders. Environmental exposure to methylmercury frequently occurs at low doses, most frequently through fish consumption. Although the general population is at risk for exposure, pregnant women and young children are the most vulnerable. A common symptom of perinatal exposure to methylmercury is increased sensory (visual) deficits, motor impairment, and an overall cognitive decline. Research has indicated that the developing cerebellum, specifically the cerebellar granular layer, is particularly vulnerable to methylmercury neurotoxicity. This review examines the effects of low-level methylmercury exposure on motor coordination. We specifically focus on the role of cerebellar granule cells in methylmercury neurotoxicity. We suggest that methylmercury induces oxidative stress in cerebellar granule cells, which subsequently results in apoptotic cell death. Understanding the mechanism by which methylmercury induces toxicity within the developing brain will allow for enhanced treatments and potential reversal of the detrimental effects.


Molecular and Cellular Biology | 2005

Mismatch Repair Proteins Are Activators of Toxic Responses to Chromium-DNA Damage

Elizabeth Peterson-Roth; Mindy Reynolds; George Quievryn; Anatoly Zhitkovich

ABSTRACT Chromium(VI) is a toxic and carcinogenic metal that causes the formation of DNA phosphate-based adducts. Cr-DNA adducts are genotoxic in human cells, although they do not block replication in vitro. Here, we report that induction of cytotoxicity in Cr(VI)-treated human colon cells and mouse embryonic fibroblasts requires the presence of all major mismatch repair (MMR) proteins. Cr-DNA adducts lost their ability to block replication of Cr-modified plasmids in human colon cells lacking MLH1 protein. The presence of functional mismatch repair caused induction of p53-independent apoptosis associated with activation of caspases 2 and 7. Processing of Cr-DNA damage by mismatch repair resulted in the extensive formation of γ-H2AX foci in G2 phase, indicating generation of double-stranded breaks as secondary toxic lesions. Induction of γ-H2AX foci was observed at 6 to 12 h postexposure, which was followed by activation of apoptosis in the absence of significant G2 arrest. Our results demonstrate that mismatch repair system triggers toxic responses to Cr-DNA backbone modifications through stress mechanisms that are significantly different from those for other forms of DNA damage. Selection for Cr(VI) resistant, MMR-deficient cells may explain the very high frequency of lung cancers with microsatellite instability among chromate workers.


Nucleic Acids Research | 2006

Ascorbate acts as a highly potent inducer of chromate mutagenesis and clastogenesis: linkage to DNA breaks in G2 phase by mismatch repair

Mindy Reynolds; Lauren Stoddard; Ivan Bespalov; Anatoly Zhitkovich

Here we examined the role of cellular vitamin C in genotoxicity of carcinogenic chromium(VI) that requires reduction to induce DNA damage. In the presence of ascorbate (Asc), low 0.2–2 μM doses of Cr(VI) caused 10–15 times more chromosomal breakage in primary human bronchial epithelial cells or lung fibroblasts. DNA double-strand breaks (DSB) were preferentially generated in G2 phase as detected by colocalization of γH2AX and 53BP1 foci in cyclin B1-expressing cells. Asc dramatically increased the formation of centromere-negative micronuclei, demonstrating that induced DSB were inefficiently repaired. DSB in G2 cells were caused by aberrant mismatch repair of Cr damage in replicated DNA, as DNA polymerase inhibitor aphidicolin and silencing of MSH2 or MLH1 by shRNA suppressed induction of γH2AX and micronuclei. Cr(VI) was also up to 10 times more mutagenic in cells containing Asc. Increasing Asc concentrations generated progressively more mutations and DSB, revealing the genotoxic potential of otherwise nontoxic Cr(VI) doses. Asc amplified genotoxicity of Cr(VI) by altering the spectrum of DNA damage, as total Cr-DNA binding was unchanged and post-Cr loading of Asc exhibited no effects. Collectively, these studies demonstrated that Asc-dependent metabolism is the main source of genotoxic and mutagenic damage in Cr(VI)-exposed cells.


Cancer Research | 2009

Rapid DNA Double-Strand Breaks Resulting from Processing of Cr-DNA Cross-Links by Both MutS Dimers

Mindy Reynolds; Elizabeth Peterson-Roth; Ivan Bespalov; Tatiana Johnston; Volkan Gurel; Haley L. Menard; Anatoly Zhitkovich

Mismatch repair (MMR) strongly enhances cyto- and genotoxicity of several chemotherapeutic agents and environmental carcinogens. DNA double-strand breaks (DSB) formed after two replication cycles play a major role in MMR-dependent cell death by DNA alkylating drugs. Here, we examined DNA damage detection and the mechanisms of the unusually rapid induction of DSB by MMR proteins in response to carcinogenic chromium(VI). We found that MSH2-MSH6 (MutSalpha) dimer effectively bound DNA probes containing ascorbate-Cr-DNA and cysteine-Cr-DNA cross-links. Binary Cr-DNA adducts, the most abundant form of Cr-DNA damage, were poor substrates for MSH2-MSH6, and their toxicity in cells was weak and MMR independent. Although not involved in the initial recognition of Cr-DNA damage, MSH2-MSH3 (MutSbeta) complex was essential for the induction of DSB, micronuclei, and apoptosis in human cells by chromate. In situ fractionation of Cr-treated cells revealed MSH6 and MSH3 chromatin foci that originated in late S phase and did not require replication of damaged DNA. Formation of MSH3 foci was MSH6 and MLH1 dependent, whereas MSH6 foci were unaffected by MSH3 status. DSB production was associated with progression of cells from S into G(2) phase and was completely blocked by the DNA synthesis inhibitor aphidicolin. Interestingly, chromosome 3 transfer into MSH3-null HCT116 cells activated an alternative, MSH3-like activity that restored dinucleotide repeat stability and sensitivity to chromate. Thus, sequential recruitment and unprecedented cooperation of MutSalpha and MutSbeta branches of MMR in processing of Cr-DNA cross-links is the main cause of DSB and chromosomal breakage at low and moderate Cr(VI) doses.


Journal of Cellular Biochemistry | 2006

Ascorbate depletion mediates up‐regulation of hypoxia‐associated proteins by cell density and nickel

Aldona Karaczyn; Sergey Ivanov; Mindy Reynolds; Anatoly Zhitkovich; Kazimierz S. Kasprzak; Konstantin Salnikow

Exposure of human lung cells to carcinogenic nickel compounds in the presence of oxygen up‐regulated carbonic anhydrase IX (CA IX) and NDRG1/Cap43, both known as intrinsic hypoxia markers and cancer‐associated genes. This suggests that factors other than a shortage of oxygen may be involved in this induction. Both proteins can also be induced in the presence of oxygen by culturing these cells to a high density without medium change. The intracellular ascorbate measurements revealed its rapid depletion in both metal‐ and density‐exposed cells. Nickel exposure caused strong activation of HIF‐1α and HIF‐2α proteins, underscoring activation of HIF‐1‐dependent transcription. In contrast, cell density‐dependent transcription was characterized by minor induction of HIF‐1α or HIF‐2α. Moreover, the up‐regulation of NDRG1/Cap43 in HIF‐1α deficient fibroblasts suggested the involvement of different transcription factor(s). The repletion of intracellular ascorbate reversed the induction of CA IX and NDRG1/Cap43 caused by cell density or nickel exposure. Thus, the loss of intracellular ascorbate triggered the induction of both tumor markers by two different conditions in the presence of oxygen. Ascorbate is delivered to lung cells via the SVCT2 ascorbate transporter, which was found to be sensitive to nickel or cell density. Collectively these findings establish the importance of intracellular ascorbate levels for the regulation of expression of CA IX and NDRG1/Cap43. We suggest, that, in addition to low oxygenation, insufficient supply of ascorbate or its excessive oxidation in tumors, can contribute to the induction of hypoxia‐associated proteins via both HIF‐dependent and independent mechanisms. J. Cell. Biochem. 97: 1025–1035, 2006.


Toxicology and Applied Pharmacology | 2012

Co-exposure to nickel and cobalt chloride enhances cytotoxicity and oxidative stress in human lung epithelial cells

Eshan Patel; Christine Lynch; Victoria Ruff; Mindy Reynolds

Nickel and cobalt are heavy metals found in land, water, and air that can enter the body primarily through the respiratory tract and accumulate to toxic levels. Nickel compounds are known to be carcinogenic to humans and animals, while cobalt compounds produce tumors in animals and are probably carcinogenic to humans. People working in industrial and manufacturing settings have an increased risk of exposure to these metals. The cytotoxicity of nickel and cobalt has individually been demonstrated; however, the underlying mechanisms of co-exposure to these heavy metals have not been explored. In this study, we investigated the effect of exposure of H460 human lung epithelial cells to nickel and cobalt, both alone and in combination, on cell survival, apoptotic mechanisms, and the generation of reactive oxygen species and double strand breaks. For simultaneous exposure, cells were exposed to a constant dose of 150 μM cobalt or nickel, which was found to be relatively nontoxic in single exposure experiments. We demonstrated that cells exposed simultaneously to cobalt and nickel exhibit a dose-dependent decrease in survival compared to the cells exposed to a single metal. The decrease in survival was the result of enhanced caspase 3 and 7 activation and cleavage of poly (ADP-ribose) polymerase. Co-exposure increased the production of ROS and the formation of double strand breaks. Pretreatment with N-acetyl cysteine alleviated the toxic responses. Collectively, this study demonstrates that co-exposure to cobalt and nickel is significantly more toxic than single exposure and that toxicity is related to the formation of ROS and DSB.


Cell Cycle | 2005

Killing of chromium-damaged cells by mismatch repair and its relevance to carcinogenesis.

Anatoly Zhitkovich; Elizabeth Peterson-Roth; Mindy Reynolds

Hexavalent chromium compounds are widespread environmental contaminants that are well recognized as human carcinogens and potent respiratory toxicants. Intracellular metabolism of chromium(VI) leads to the production of numerous chromium-DNA adducts that are primarily formed at the phosphate groups. The mechanism of toxicity of these DNA modifications in human cells has been uncertain for a long time because chromium and other phosphate-based adducts did not block DNA replication with purified polymerases. Our recent studies identified mismatch repair proteins as activators of toxic responses to chromium-DNA damage, which resolved an apparent discrepancy in genotoxic activity of chromium adducts in cells and in vitro. The discovered mechanism of toxicity provided the basis for a novel model of chromium carcinogenesis based on the selection of resistant clones that lack mismatch repair and progress to cancer due to high levels of spontaneous mutagenesis.


Mutagenesis | 2012

Undetectable role of oxidative DNA damage in cell cycle, cytotoxic and clastogenic effects of Cr(VI) in human lung cells with restored ascorbate levels

Mindy Reynolds; Susan Armknecht; Tatiana Johnston; Anatoly Zhitkovich

Cultured human cells are invaluable biological models for mechanistic studies of genotoxic chemicals and drugs. Continuing replacement of animals in toxicity testing will further increase the importance of in vitro cell systems, which should accurately reproduce key in vivo characteristics of toxicants such as their profiles of metabolites and DNA lesions. In this work, we examined how a common severe deficiency of cultured cells in ascorbate (Asc) impacts the formation of oxidative DNA damage by hexavalent chromium (chromate). Cr(VI) is reductively activated inside the cells by both Asc and small thiols but with different rates and spectra of intermediates and DNA adducts. We found that Cr(VI) exposure of H460 human lung epithelial cells in standard culture (<0.01 mM cellular Asc) induced biologically significant amounts of oxidative DNA damage. Inhibition of oxidative damage repair in these cells by stable XRCC1 knockdown strongly enhanced cytotoxic effects of Cr(VI) and led to depletion of cells from G(1) and accumulation in S and G(2) phases. However, restoration of physiological levels of Asc (≈ 1 mM) completely eliminated Cr(VI) hypersensitivity of XRCC1 knockdown. The induction of chromosomal breaks assayed by the micronucleus test in Asc-restored H460, primary human lung fibroblasts, and CHO cells was also unaffected by the XRCC1 status. Centromere-negative (clastogenic) micronuclei accounted for 80-90% of all Cr(VI)-induced micronuclei. Consistent with the micronuclei results, Asc-restored cells also showed no increase in the levels of poly(ADP-ribose), which is a biochemical marker of single-stranded breaks. Asc had no effect on cytotoxicity of O(6)-methylguanine, a lesion produced by direct DNA alkylation. Overall, our results indicate that the presence of physiological levels of Asc strongly suppresses pro-oxidant pathways in Cr(VI) metabolism and that the use of standard cell cultures creates a distorted profile of its genotoxic properties.


Mutagenesis | 2010

XPA impacts formation but not proteasome-sensitive repair of DNA–protein cross-links induced by chromate

Alma Zecevic; Elizabeth Hagan; Mindy Reynolds; Graham M. Poage; Tatiana Johnston; Anatoly Zhitkovich

DNA-protein cross-links (DPCs) are caused by a large number of human carcinogens and anti-cancer drugs. However, cellular processes involved in decreasing a burden of these genotoxic lesions remain poorly understood. Here, we examined the impact of nucleotide excision repair (NER), which is a principal repair pathway for bulky DNA adducts, and the main cellular reducers on removal of chromium(VI)-induced DPC. We found that standard and ascorbate-restored cultures of isogenic XPA-null (NER deficient) and XPA-complemented human fibroblasts had very similar repair of Cr-DPC (60-65% average DPC removal after 24 h). However, XPA absence caused depletion of G1 and accumulation of G2 cells at low Cr(VI) doses, suggesting that Cr-DPC were not a significant cause of cell cycle perturbations. Interestingly, although pro-oxidant metabolism of Cr(VI) in glutathione-depleted cells generated significantly fewer DPC, they were repair resistant irrespective of the NER status of cells. Inhibition of proteasome activity by MG132 abolished DPC repair in both XPA-null and XPA-complemented cells. XPA loss caused two to three times higher initial DPC formation, demonstrating the importance of NER in removal of the precursor lesions. Our results indicate that human NER is not involved in removal of Cr-DPC containing non-histone proteins but it acts as a defence mechanism against these large lesions by preventing their formation. Therefore, individual differences in NER activity are expected to alter sensitivity but not persistence of DPC as a biomarker of hexavalent Cr.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2017

Induction of cytotoxic and genotoxic damage following exposure of V79 cells to cadmium chloride

Jillian Gobrecht; Claire McDyre; James Comotto; Mindy Reynolds

Cadmium is a toxic heavy metal with many industrial and commercial uses resulting in widespread environmental pollution. Exposure to cadmium occurs occupationally, through tainted food, tobacco leaves, and the environment. Cadmium exposure has been linked to neurological and respiratory problems and cancer. Past studies have examined cytotoxicity, DNA damage, micronuclei formation, or mutagenesis individually, but no study has examined these endpoints together and correlated them with intracellular cadmium concentrations. This study examines the cytotoxic, genotoxic, and mutagenic effects of cadmium exposure in V79 cells providing a correlation between the induction of DNA damage, the generation of mutations, and intracellular cadmium concentration. Cells exposed to 2.5-40μM cadmium exhibited a concentration-dependent decrease in survival which correlated with increases in PARP cleavage and caspase activity. Cytotoxicity was detected at intracellular cadmium concentrations of 12.9ppb. Exposure to cadmium also resulted in the production of single and double strand breaks and the induction micronuclei and mutations in the Hprt gene. Collectively, this study demonstrates that exposure of V79 cells to cadmium results in the induction of apoptosis which is related to the formation of DNA strand breaks and genotoxic damage.

Collaboration


Dive into the Mindy Reynolds's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge