Ming-Che Shih
Academia Sinica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ming-Che Shih.
Plant Physiology | 2005
Shin Han Shiu; Ming-Che Shih; Wen-Hsiung Li
Transcription factors (TFs), which are central to the regulation of gene expression, are usually members of multigene families. In plants, they are involved in diverse processes such as developmental control and elicitation of defense and stress responses. To investigate if differences exist in the expansion patterns of TF gene families between plants and other eukaryotes, we first used Arabidopsis (Arabidopsis thaliana) TFs to identify TF DNA-binding domains. These DNA-binding domains were then used to identify related sequences in 25 other eukaryotic genomes. Interestingly, among 19 families that are shared between animals and plants, more than 14 are larger in plants than in animals. After examining the lineage-specific expansion of TF families in two plants, eight animals, and two fungi, we found that TF families shared among these organisms have undergone much more dramatic expansion in plants than in other eukaryotes. Moreover, this elevated expansion rate of plant TF is not simply due to higher duplication rates of plant genomes but also to a higher degree of expansion compared to other plant genes. Further, in many Arabidopsis-rice (Oryza sativa) TF orthologous groups, the degree of lineage-specific expansion in Arabidopsis is correlated with that in rice. This pattern of parallel expansion is much more pronounced than the whole-genome trend in rice and Arabidopsis. The high rate of expansion among plant TF genes and their propensity for parallel expansion suggest frequent adaptive responses to selection pressure common among higher plants.
Plant Physiology | 2011
Chin-Ying Yang; Fu-Chiun Hsu; Jin-Ping Li; Ning-Ning Wang; Ming-Che Shih
A number of APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) genes have been shown to function in abiotic and biotic stress responses, and these genes are often induced by multiple stresses. We report here the characterization of an AP2/ERF gene in Arabidopsis (Arabidopsis thaliana) that is specifically induced during hypoxia. We show that under normoxic conditions, the expression of AtERF73/HRE1 can be induced by exogenous addition of 1-aminocyclopropane-1-carboxylic acid and that a combination of hypoxia and 1-aminocyclopropane-1-carboxylic acid results in hyperinduction of AtERF73/HRE1 expression. In addition, hypoxic induction of AtERF73/HRE1 is reduced but not completely abolished in ethylene-insensitive mutants and in the presence of inhibitors of ethylene biosynthesis and responses. These results suggest that, in addition to ethylene, an ethylene-independent signal is also required to mediate hypoxic induction of AtERF73/HRE1. To assess the role of AtERF73/HRE1, we generated three independent RNA interference (RNAi) knockdown lines of AtERF73/HRE1. Under normoxic conditions, the AtERF73/HRE1-RNAi seedlings displayed increased ethylene sensitivity and exaggerated triple responses, indicating that AtERF73/HRE1 might play a negative regulatory role in modulating ethylene responses. Gas chromatography analyses showed that the production of ethylene was similar between wild-type and RNAi lines under hypoxia. Quantitative reverse transcription-polymerase chain reaction analyses showed that hypoxia-inducible genes could be affected by AtERF73/HRE1-RNAi lines in two different ways: hypoxic induction of glycolytic and fermentative genes was reduced, whereas induction of a number of peroxidase and cytochrome P450 genes was increased. Taken together, our results show that AtERF73/HRE1 is involved in modulating ethylene responses under both normoxia and hypoxia.
Plant and Cell Physiology | 2011
Chun-lin Su; Ya-Ting Chao; Yao-Chien Alex Chang; Wan-Chieh Chen; Chun-Yi Chen; Ann-Ying Lee; Kee Tuan Hwa; Ming-Che Shih
Being one of the largest families in the angiosperms, Orchidaceae display a great biodiversity resulting from adaptation to diverse habitats. Genomic information on orchids is rather limited, despite their unique and interesting biological features, thus impeding advanced molecular research. Here we report a strategy to integrate sequence outputs of the moth orchid, Phalaenopsis aphrodite, from two high-throughput sequencing platform technologies, Roche 454 and Illumina/Solexa, in order to maximize assembly efficiency. Tissues collected for cDNA library preparation included a wide range of vegetative and reproductive tissues. We also designed an effective workflow for annotation and functional analysis. After assembly and trimming processes, 233,823 unique sequences were obtained. Among them, 42,590 contigs averaging 875 bp in length were annotated to protein-coding genes, of which 7,263 coding genes were found to be nearly full length. The sequence accuracy of the assembled contigs was validated to be as high as 99.9%. Genes with tissue-specific expression were also categorized by profiling analysis with RNA-Seq. Gene products targeted to specific subcellular localizations were identified by their annotations. We concluded that, with proper assembly to combine outputs of next-generation sequencing platforms, transcriptome information can be enriched in gene discovery, functional annotation and expression profiling of a non-model organism.
The Plant Cell | 2013
Fu-Chiun Hsu; Mei-Yi Chou; Shu-Jen Chou; Ya-Ru Li; Hsiao-Ping Peng; Ming-Che Shih
Submergence induces the expression of a broad spectrum of genes, including a group of WRKY transcription factors and innate immunity marker genes. This work shows that submergence triggers innate immunity in Arabidopsis to protect plants against a higher probability of pathogen infection either during or after flood. Transcriptional control plays an important role in regulating submergence responses in plants. Although numerous genes are highly induced during hypoxia, their individual roles in hypoxic responses are still poorly understood. Here, we found that expression of genes that encode members of the WRKY transcription factor family was rapidly and strongly induced upon submergence in Arabidopsis thaliana, and this induction correlated with induction of a large portion of innate immunity marker genes. Furthermore, prior submergence treatment conferred higher resistance to the bacterial pathogen Pseudomonas syringae in Arabidopsis. Among the WRKY genes tested, WRKY22 had the highest level of induction during the early stages of submergence. Compared with the wild type, WRKY22 T-DNA insertion mutants wrky22-1 and wrky22-2 had lower disease resistance and lower induction of innate immunity markers, such as FLG22-INDUCED RECEPTOR-LIKE KINASE1 (FRK1) and WRKY53, after submergence. Furthermore, transcriptomic analyses of wrky22-2 and chromatin immunoprecipitation identified several potential targets of WRKY22, which included genes encoding a TIR domain–containing protein, a plant peptide hormone, and many OLIGO PEPTIDE TRANSPORTER genes, all of which may lead to induction of innate immunity. In conclusion, we propose that submergence triggers innate immunity in Arabidopsis via WRKY22, a response that may protect against a higher probability of pathogen infection either during or after flooding.
PLOS ONE | 2011
Fu-Chiun Hsu; Mei-Yi Chou; Hsiao-Ping Peng; Shu-Jen Chou; Ming-Che Shih
We have adopted a hypoxic treatment system in which only roots were under hypoxic conditions. Through analyzing global transcriptional changes in both shoots and roots, we found that systemic signals may be transduced from roots to trigger responses in tissues not directly subjected to hypoxia. The molecular mechanisms of such systemic responses under flooding are currently largely unknown. Using ontological categorization for regulated genes, a systemic managing program of carbohydrate metabolism was observed, providing an example of how systemic responses might facilitate the survival of plants under flooding. Moreover, a proportion of gene expressions that regulated in shoots by flooding was affected in an ethylene signaling mutation, ein2-5. Many systemic-responsive genes involved in the systemic carbohydrate managing program, hormone responses and metabolism, ubiquitin-dependent protein degradation were also affected in ein2-5. These results suggested an important role of ethylene in mediation of hypoxic systemic responses. Genes associated with abscisic acid (ABA) biosynthesis are upregulated in shoots and down regulated in roots. An ABA signaling mutation, abi4-1, affects expression of several systemic responsive genes. These results suggested that regulation of ABA biosynthesis could be required for systemic responses. The implications of these results for the systemic responses of root-flooded Arabidopsis are discussed.
Biotechnology for Biofuels | 2013
Jui-Jen Chang; Feng-Ju Ho; Cheng-Yu Ho; Yueh-Chin Wu; Yu-Han Hou; Chieh-Chen Huang; Ming-Che Shih; Wen-Hsiung Li
BackgroundMany microorganisms possess enzymes that can efficiently degrade lignocellulosic materials, but do not have the capability to produce a large amount of ethanol. Thus, attempts have been made to transform such enzymes into fermentative microbes to serve as hosts for ethanol production. However, an efficient host for a consolidated bioprocess (CBP) remains to be found. For this purpose, a synthetic biology technique that can transform multiple genes into a genome is instrumental. Moreover, a strategy to select cellulases that interact synergistically is needed.ResultsTo engineer a yeast for CBP bio-ethanol production, a synthetic biology technique, called “promoter-based gene assembly and simultaneous overexpression” (PGASO), that can simultaneously transform and express multiple genes in a kefir yeast, Kluyveromyces marxianus KY3, was recently developed. To formulate an efficient cellulase cocktail, a filter-paper-activity assay for selecting heterologous cellulolytic enzymes was established in this study and used to select five cellulase genes, including two cellobiohydrolases, two endo-β-1,4-glucanases and one beta-glucosidase genes from different fungi. In addition, a fungal cellodextrin transporter gene was chosen to transport cellodextrin into the cytoplasm. These six genes plus a selection marker gene were one-step assembled into the KY3 genome using PGASO. Our experimental data showed that the recombinant strain KR7 could express the five heterologous cellulase genes and that KR7 could convert crystalline cellulose into ethanol.ConclusionSeven heterologous genes, including five cellulases, a cellodextrin transporter and a selection marker, were simultaneously transformed into the KY3 genome to derive a new strain, KR7, which could directly convert cellulose to ethanol. The present study demonstrates the potential of our strategy of combining a cocktail formulation protocol and a synthetic biology technique to develop a designer yeast host.
PLOS ONE | 2012
I-Chun Pan; Der-Chih Liao; Fu-Huei Wu; Henry Daniell; Nameirakpam D. Singh; Chen Chang; Ming-Che Shih; Ming-Tsair Chan; Choun-Sea Lin
Oncidium is an important ornamental plant but the study of its functional genomics is difficult. Erycina pusilla is a fast-growing Oncidiinae species. Several characteristics including low chromosome number, small genome size, short growth period, and its ability to complete its life cycle in vitro make E. pusilla a good model candidate and parent for hybridization for orchids. Although genetic information remains limited, systematic molecular analysis of its chloroplast genome might provide useful genetic information. By combining bacterial artificial chromosome (BAC) clones and next-generation sequencing (NGS), the chloroplast (cp) genome of E. pusilla was sequenced accurately, efficiently and economically. The cp genome of E. pusilla shares 89 and 84% similarity with Oncidium Gower Ramsey and Phalanopsis aphrodite, respectively. Comparing these 3 cp genomes, 5 regions have been identified as showing diversity. Using PCR analysis of 19 species belonging to the Epidendroideae subfamily, a conserved deletion was found in the rps15-trnN region of the Cymbidieae tribe. Because commercial Oncidium varieties in Taiwan are limited, identification of potential parents using molecular breeding method has become very important. To demonstrate the relationship between taxonomic position and hybrid compatibility of E. pusilla, 4 DNA regions of 36 tropically adapted Oncidiinae varieties have been analyzed. The results indicated that trnF-ndhJ and trnH-psbA were suitable for phylogenetic analysis. E. pusilla proved to be phylogenetically closer to Rodriguezia and Tolumnia than Oncidium, despite its similar floral appearance to Oncidium. These results indicate the hybrid compatibility of E. pusilla, its cp genome providing important information for Oncidium breeding.
Scientific Reports | 2015
Choun-Sea Lin; Jeremy J.W. Chen; Yao-Ting Huang; Ming-Tsair Chan; Henry Daniell; Wan-Jung Chang; Chen-Tran Hsu; De-Chih Liao; Fu-Huei Wu; Sheng-Yi Lin; Chen-Fu Liao; Michael K. Deyholos; Gane Ka-Shu Wong; Victor A. Albert; Ming-Lun Chou; Chun-Yi Chen; Ming-Che Shih
The NAD(P)H dehydrogenase complex is encoded by 11 ndh genes in plant chloroplast (cp) genomes. However, ndh genes are truncated or deleted in some autotrophic Epidendroideae orchid cp genomes. To determine the evolutionary timing of the gene deletions and the genomic locations of the various ndh genes in orchids, the cp genomes of Vanilla planifolia, Paphiopedilum armeniacum, Paphiopedilum niveum, Cypripedium formosanum, Habenaria longidenticulata, Goodyera fumata and Masdevallia picturata were sequenced; these genomes represent Vanilloideae, Cypripedioideae, Orchidoideae and Epidendroideae subfamilies. Four orchid cp genome sequences were found to contain a complete set of ndh genes. In other genomes, ndh deletions did not correlate to known taxonomic or evolutionary relationships and deletions occurred independently after the orchid family split into different subfamilies. In orchids lacking cp encoded ndh genes, non cp localized ndh sequences were identified. In Erycina pusilla, at least 10 truncated ndh gene fragments were found transferred to the mitochondrial (mt) genome. The phenomenon of orchid ndh transfer to the mt genome existed in ndh-deleted orchids and also in ndh containing species.
Biotechnology for Biofuels | 2012
Hsin-Liang Chen; Yo-Chia Chen; Mei-Yeh Jade Lu; Jui-Jen Chang; Hiaow-Ting Christine Wang; Huei-Mien Ke; Tzi-Yuan Wang; Sz-Kai Ruan; Tao-Yuan Wang; Kuo-Yen Hung; Hsing-Yi Cho; Wan-Ting Lin; Ming-Che Shih; Wen-Hsiung Li
BackgroundCellulose, which is the most abundant renewable biomass on earth, is a potential bio-resource of alternative energy. The hydrolysis of plant polysaccharides is catalyzed by microbial cellulases, including endo-β-1,4-glucanases, cellobiohydrolases, cellodextrinases, and β-glucosidases. Converting cellobiose by β-glucosidases is the key factor for reducing cellobiose inhibition and enhancing the efficiency of cellulolytic enzymes for cellulosic ethanol production.ResultsIn this study, a cDNA encoding β-glucosidase was isolated from the buffalo rumen fungus Neocallimastix patriciarum W5 and is named NpaBGS. It has a length of 2,331 bp with an open reading frame coding for a protein of 776 amino acid residues, corresponding to a theoretical molecular mass of 85.1 kDa and isoelectric point of 4.4. Two GH3 catalytic domains were found at the N and C terminals of NpaBGS by sequence analysis. The cDNA was expressed in Pichia pastoris and after protein purification, the enzyme displayed a specific activity of 34.5 U/mg against cellobiose as the substrate. Enzymatic assays showed that NpaBGS was active on short cello-oligosaccharides from various substrates. A weak activity in carboxymethyl cellulose (CMC) digestion indicated that the enzyme might also have the function of an endoglucanase. The optimal activity was detected at 40°C and pH 5 ~ 6, showing that the enzyme prefers a weak acid condition. Moreover, its activity could be enhanced at 50°C by adding Mg2+ or Mn2+ ions. Interestingly, in simultaneous saccharification and fermentation (SSF) experiments using Saccharomyces cerevisiae BY4741 or Kluyveromyces marxianus KY3 as the fermentation yeast, NpaBGS showed advantages in cell growth, glucose production, and ethanol production over the commercial enzyme Novo 188. Moreover, we showed that the KY3 strain engineered with the NpaNGS gene can utilize 2 % dry napiergrass as the sole carbon source to produce 3.32 mg/ml ethanol when Celluclast 1.5 L was added to the SSF system.ConclusionOur characterizations of the novel β-glucosidase NpaBGS revealed that it has a preference of weak acidity for optimal yeast fermentation and an optimal temperature of ~40°C. Since NpaBGS performs better than Novo 188 under the living conditions of fermentation yeasts, it has the potential to be a suitable enzyme for SSF.
Biotechnology for Biofuels | 2011
Tzi Yuan Wang; Hsin Liang Chen; Mei Yeh J. Lu; Yo Chia Chen; Huang Mo Sung; Chi Tang Mao; Hsing Yi Cho; Huei Mien Ke; Teh Yang Hwa; Sz Kai Ruan; Kuo Yen Hung; Chih Kuan Chen; Jeng Yi Li; Yueh Chin Wu; Yu Hsiang Chen; Shao Pei Chou; Ya Wen Tsai; Te Chin Chu; Chun Chieh A. Shih; Wen-Hsiung Li; Ming-Che Shih
BackgroundNeocallimastix patriciarum is one of the common anaerobic fungi in the digestive tracts of ruminants that can actively digest cellulosic materials, and its cellulases have great potential for hydrolyzing cellulosic feedstocks. Due to the difficulty in culture and lack of a genome database, it is not easy to gain a global understanding of the glycosyl hydrolases (GHs) produced by this anaerobic fungus.ResultsWe have developed an efficient platform that uses a combination of transcriptomic and proteomic approaches to N. patriciarum to accelerate gene identification, enzyme classification and application in rice straw degradation. By conducting complementary studies of transcriptome (Roche 454 GS and Illumina GA IIx) and secretome (ESI-Trap LC-MS/MS), we identified 219 putative GH contigs and classified them into 25 GH families. The secretome analysis identified four major enzymes involved in rice straw degradation: β-glucosidase, endo-1,4-β-xylanase, xylanase B and Cel48A exoglucanase. From the sequences of assembled contigs, we cloned 19 putative cellulase genes, including the GH1, GH3, GH5, GH6, GH9, GH18, GH43 and GH48 gene families, which were highly expressed in N. patriciarum cultures grown on different feedstocks.ConclusionsThese GH genes were expressed in Pichia pastoris and/or Saccharomyces cerevisiae for functional characterization. At least five novel cellulases displayed cellulytic activity for glucose production. One β-glucosidase (W5-16143) and one exocellulase (W5-CAT26) showed strong activities and could potentially be developed into commercial enzymes.