Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ming-Chen Chou is active.

Publication


Featured researches published by Ming-Chen Chou.


Journal of Medicinal Chemistry | 2009

Discovery of 2-[5-(4-chloro-phenyl)-1-(2,4-dichloro-phenyl)-4-ethyl-1H-pyrazol-3-yl]-1,5,5-trimethyl-1,5-dihydro-imidazol-4-thione (BPR-890) via an active metabolite. A novel, potent and selective cannabinoid-1 receptor inverse agonist with high antiobesity efficacy in DIO mice.

Chien-Huang Wu; Ming-Shiu Hung; Jen-Shin Song; Teng-Kuang Yeh; Ming-Chen Chou; Cheng-Ming Chu; Jiing-Jyh Jan; Min-Tsang Hsieh; Shi-Liang Tseng; Chun-Ping Chang; Wan-Ping Hsieh; Yinchiu Lin; Yen-Nan Yeh; Wan-Ling Chung; Chun-Wei Kuo; Chin-Yu Lin; Horng-Shing Shy; Yu-Sheng Chao; Kak-Shan Shia

By using the active metabolite 5 as an initial template, further structural modifications led to the identification of the titled compound 24 (BPR-890) as a highly potent CB1 inverse agonist possessing an excellent CB2/1 selectivity and remarkable in vivo efficacy in diet-induced obese mice with a minimum effective dose as low as 0.03 mg/kg (po qd) at the end of the 30-day chronic study. Current SAR studies along with those of many existing rimonabant-mimicking molecules imply that around the pyrazole C3-position, a rigid and deep binding pocket should exist for CB1 receptor. In addition, relative to the conventional carboxamide carbonyl, serving as a key hydrogen-bond acceptor during ligand-CB1 receptor interaction, the corresponding polarizable thione carbonyl might play a more critical role in stabilizing the Asp366-Lys192 salt bridge in the proposed CB1-receptor homology model and inducing significant selectivity for CB1R over CB2R.


Journal of Medicinal Chemistry | 2013

Discovery of 1-(2,4-Dichlorophenyl)-N-(piperidin-1-yl)-4-((pyrrolidine-1-sulfonamido)methyl)-5-(5-((4-(trifluoromethyl)phenyl)ethynyl)thiophene-2-yl)-1H-pyrazole-3-carboxamide as a Novel Peripherally Restricted Cannabinoid-1 Receptor Antagonist with Significant Weight-Loss Efficacy in Diet-Induced Obese Mice

Chun-Ping Chang; Chien-Huang Wu; Jen-Shin Song; Ming-Chen Chou; Ying-Chieh Wong; Yinchiu Lin; Teng-Kuang Yeh; Amit A. Sadani; Ming-Hung Ou; Kun-Hung Chen; Pei-Hsuan Chen; Po-Chu Kuo; Chen-Tso Tseng; Kuei-Hua Chang; Shi-Liang Tseng; Yu-Sheng Chao; Ming-Shiu Hung; Kak-Shan Shia

After extensive synthetic efforts, we found that many structurally diverse bioisosteres could be generated via derivatizing the C-4 alkyl chain on the pyrazole ring of compound 3 (B/P = 1/33) with different electronegative groups. Especially when a sulfonamide or sulfamide moiety was added, resulting compounds exhibited not only potent CB1R activity but also a desired tPSA value over 90 Å(2), a threshold considered to possess a low probability to cross BBB, leading to the identification of compound 4 (B/P = 1/64) as a peripherally restricted CB1R antagonist. Apart from its significant weight-loss efficacy in DIO mice, compound 4 also displays 163 clean off-target profiles and is currently under development for treating obesity and the related metabolic syndrome.


Journal of Medicinal Chemistry | 2015

Function-oriented development of CXCR4 antagonists as selective human immunodeficiency virus (HIV)-1 entry inhibitors.

Chien-Huang Wu; Chuan-Jen Wang; Chun-Ping Chang; Yung-Chi Cheng; Jen-Shin Song; Jiing-Jyh Jan; Ming-Chen Chou; Yi-Yu Ke; Jing Ma; Ying-Chieh Wong; Tsung-Chih Hsieh; Yun Chen Tien; Elizabeth A. Gullen; Chen-Fu Lo; Chia-Yi Cheng; Yu-Wei Liu; Amit A. Sadani; Chia-Hua Tsai; Hsin-Pang Hsieh; Lun K. Tsou; Kak-Shan Shia

Motivated by the pivotal role of CXCR4 as an HIV entry co-receptor, we herein report a de novo hit-to-lead effort on the identification of subnanomolar purine-based CXCR4 antagonists against HIV-1 infection. Compound 24, with an EC50 of 0.5 nM against HIV-1 entry into host cells and an IC50 of 16.4 nM for inhibition of radioligand stromal-derived factor-1α (SDF-1α) binding to CXCR4, was also found to be highly selective against closely related chemokine receptors. We rationalized that compound 24 complementarily interacted with the critical CXCR4 residues that are essential for binding to HIV-1 gp120 V3 loop and subsequent viral entry. Compound 24 showed a 130-fold increase in anti-HIV activity compared to that of the marketed CXCR4 antagonist, AMD3100 (Plerixafor), whereas both compounds exhibited similar potency in mobilization of CXCR4(+)/CD34(+) stem cells at a high dose. Our study offers insight into the design of anti-HIV therapeutics devoid of major interference with SDF-1α function.


ChemMedChem | 2012

Discovery of novel stem cell mobilizers that target the CXCR4 receptor.

Chien-Huang Wu; Chun-Ping Chang; Jen-Shin Song; Jiing-Jyh Jan; Ming-Chen Chou; Szu-Huei Wu; Kai-Chia Yeh; Ying-Chieh Wong; Chieh-Jui Hsieh; Chiung-Tong Chen; Tzu-Ting Kao; Su-Ying Wu; Ching-Fang Yeh; Chen-Tso Tseng; Yu-Sheng Chao; Kak-Shan Shia

The chemokine CXCL12 (also known as stromal cell-derived factor-1, SDF-1) consists of 68 amino acids and is a highly positively charged member of the CXC chemokines. It was originally cloned from bone marrow stromal cell lines and was found to act as a growth factor for progenitor B cells. The physiological function of SDF-1 is mediated by the CXCR4 receptor, a G-protein-coupled seven-transmembrane receptor (GPCR), and is broadly expressed in a variety of human tissues, particularly those of the immune and central nervous systems. CXCR4 was also identified as the main co-receptor by which T-lymphotropic HIV strains enter target cells. Although the initial interest in CXCR4 antagonists was focused on their potential application in the treatment of HIV infection, 6] it is now recognized that the SDF-1/CXCR4 axis is also involved in many diseases such as rheumatoid arthritis, asthma, leukemia, and tumor metastasis ; it also helps in recruiting stem cells to sites of injury. AMD3100 (plerixafor, Mozobil), the first highly potent and specific CXCR4 antagonist, was originally intended to treat HIV infection, but failed in phase II clinical trials. Nevertheless, it


Journal of Medicinal Chemistry | 2015

Stem Cell Mobilizers Targeting Chemokine Receptor CXCR4: Renoprotective Application in Acute Kidney Injury

Chien-Huang Wu; Jen-Shin Song; Kuei-Hua Chang; Jiing-Jyh Jan; Chiung-Tong Chen; Ming-Chen Chou; Kai-Chia Yeh; Ying-Chieh Wong; Chen-Tso Tseng; Szu-Huei Wu; Ching-Fang Yeh; Chung-Yu Huang; Min-Hsien Wang; Amit A. Sadani; Chun-Ping Chang; Chia-Yi Cheng; Lun K. Tsou; Kak-Shan Shia

We have discovered a novel series of quinazoline-based CXCR4 antagonists. Of these, compound 19 mobilized CXCR4(+) cell types, including hematopoietic stem cells and endothelial progenitor cells, more efficiently than the marketed 1 (AMD3100) with subcutaneous administration at the same dose (6 mg/kg) in mice. This series of compounds thus provides a set of valuable tools to study diseases mediated by the CXCR4/SDF-1 axis, including myocardial infarction, ischemic stroke, and cancer metastasis. More importantly, treatment with compound 19 significantly lowered levels of blood urea nitrogen and serum creatinine in rats with renal ischemia-reperfusion injury, providing evidence for its therapeutic potential in preventing ischemic acute kidney injury. CXCR4 antagonists such as 19 might also be useful to increase circulating levels of adult stem cells, thereby exerting beneficial effects on damaged and/or inflamed tissues in diseases that currently are not treated by standard approaches.


Journal of Medicinal Chemistry | 2018

Development of Stem-Cell-Mobilizing Agents Targeting CXCR4 Receptor for Peripheral Blood Stem Cell Transplantation and Beyond

Chien-Huang Wu; Jen-Shin Song; Hsuan-Hao Kuan; Szu-Huei Wu; Ming-Chen Chou; Jiing-Jyh Jan; Lun Kelvin Tsou; Yi-Yu Ke; Chiung-Tong Chen; Kai-Chia Yeh; Sing-Yi Wang; Teng-Kuang Yeh; Chen-Tso Tseng; Chen-Lung Huang; Mine-Hsine Wu; Po-Chu Kuo; Chia-Jui Lee; Kak-Shan Shia

The function of the CXCR4/CXCL12 axis accounts for many disease indications, including tissue/nerve regeneration, cancer metastasis, and inflammation. Blocking CXCR4 signaling with its antagonists may lead to moving out CXCR4+ cell types from bone marrow to peripheral circulation. We have discovered a novel series of pyrimidine-based CXCR4 antagonists, a representative (i.e., 16) of which was tolerated at a higher dose and showed better HSC-mobilizing ability at the maximal response dose relative to the approved drug 1 (AMD3100), and thus considered a potential drug candidate for PBSCT indication. Docking compound 16 into the X-ray crystal structure of CXCR4 receptor revealed that it adopted a spider-like conformation striding over both major and minor subpockets. This putative binding mode provides a new insight into CXCR4 receptor-ligand interactions for further structural modifications.


Advanced Synthesis & Catalysis | 2014

Manganese(III)-Catalyzed Oxidative Cyclization of Aryl 1-Cyanoalk-5-ynyl Ketone Systems: A Convenient and General Approach to Cyclopenta[b]naphthalene Derivatives

Ying-Chieh Wong; Tzu-Ting Kao; Jing-Kai Huang; Yi-Wun Jhang; Ming-Chen Chou; Kak-Shan Shia


Archive | 2005

Synthesis of polyamine compounds

Chien-Huang Wu; Jia-Liang Zhu; Chen-Tso Tseng; Chi-Feng Yen; Kak-Shan Shia; Yibin Xiang; Gholam Hossein Hakimelahi; Ming-Chen Chou


Archive | 2007

Synthesis of amino-protected cyclohexane-1,4-diyldimethanamine and its derivatives

Chi-Feng Yen; Chang-Pin Huang; Cheng-Kung Hu; Ming-Chen Chou; Chi-Hsin Richard King


ChemMedChem | 2012

Back Cover: Discovery of Novel Stem Cell Mobilizers That Target the CXCR4 Receptor (ChemMedChem 2/2012)

Chien-Huang Wu; Chun-Ping Chang; Jen-Shin Song; Jiing-Jyh Jan; Ming-Chen Chou; Szu-Huei Wu; Kai-Chia Yeh; Ying-Chieh Wong; Chieh-Jui Hsieh; Chiung-Tong Chen; Tzu-Ting Kao; Su-Ying Wu; Ching-Fang Yeh; Chen-Tso Tseng; Yu-Sheng Chao; Kak-Shan Shia

Collaboration


Dive into the Ming-Chen Chou's collaboration.

Top Co-Authors

Avatar

Chien-Huang Wu

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Kak-Shan Shia

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Chen-Tso Tseng

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Jen-Shin Song

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Chun-Ping Chang

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Jiing-Jyh Jan

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Ying-Chieh Wong

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Chiung-Tong Chen

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Kai-Chia Yeh

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Szu-Huei Wu

National Health Research Institutes

View shared research outputs
Researchain Logo
Decentralizing Knowledge