Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ming-Chu Xi is active.

Publication


Featured researches published by Ming-Chu Xi.


Brain Research | 2001

Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat

Ming-Chu Xi; Francisco R. Morales; Michael H. Chase

Anatomical data demonstrate a dense projection, in the cat, from hypocretin (orexin) neurons in the hypothalamus to the laterodorsal tegmental nucleus (LDT), which is a critical pontine site that is involved in the regulation of the behavioral states of sleep and wakefulness. The present study was therefore undertaken to explore the hypocretinergic control of neurons in the LDT vis-à-vis these behavioral states. Accordingly, hypocretin-1 was microinjected into the LDT of chronic, unanesthetized cats and its effects on the percentage, latency, frequency and duration of wakefulness, quiet (non-REM) sleep and active (REM) sleep were determined. There was a significant increase in the time spent in wakefulness following the microinjection of hypocretin-1 into the LDT and a significant decrease in the time spent in active sleep. The increase in the percentage of wakefulness was due to an increase in the duration of episodes of wakefulness; the reduction in active sleep was due to a decrease in the frequency of active sleep episodes, but not in their duration. These data indicate that hypocretinergic processes in the LDT play an important role in both of the promotion of wakefulness and the suppression of active sleep.


Neuroscience | 1999

Hypoglossal motoneurons are postsynaptically inhibited during carbachol-induced rapid eye movement sleep.

Jack Yamuy; Simon J. Fung; Ming-Chu Xi; Francisco R. Morales; Michael H. Chase

The obstructive sleep apnea syndrome is characterized by the occurrence of cyclic snoring and frequent apneic episodes during sleep, with consequent hypoxia and hypercapnia. Obstructive sleep apnea syndrome is associated with excess daytime sleepiness, depression, and an increased incidence of ischemic cardiopathy, cardiac arrhythmias, systemic hypertension and brain infarction. Hypoglossal motoneurons, which innervate extrinsic and intrinsic muscles of the tongue, play a key role in maintaining the patency of the upper airway and in the pathophysiology of obstructive sleep apnea syndrome. Based on data obtained by using extracellular recording techniques, there is a consensus that hypoglossal motoneurons cease to discharge during rapid eye movement sleep, because they are disfacilitated. Since other somatic motoneurons are known to be postsynaptically inhibited during rapid eye movement sleep, we sought to determine, by the use of intracellular recording techniques during cholinergically induced rapid eye movement sleep, whether postsynaptic inhibitory mechanisms act on hypoglossal motoneurons. We found that, during this state, a powerful glycinergic premotor inhibitory system acts to suppress hypoglossal motoneurons. This finding opens new avenues for the treatment of obstructive sleep apnea syndrome, and provides a foundation to explore the neural and pharmacological control of respiration-related motoneurons during rapid eye movement sleep.


The Journal of Neuroscience | 2004

Hypocretinergic Control of Spinal Cord Motoneurons

Jack Yamuy; Simon J. Fung; Ming-Chu Xi; Michael H. Chase

Hypocretinergic (orexinergic) neurons in the lateral hypothalamus project to motor columns in the lumbar spinal cord. Consequently, we sought to determine whether the hypocretinergic system modulates the electrical activity of motoneurons. Using in vivo intracellular recording techniques, we examined the response of spinal motoneurons in the cat to electrical stimulation of the lateral hypothalamus. In addition, we examined the membrane potential response to orthodromic stimulation and intracellular current injection before and after both hypothalamic stimulation and the juxtacellular application of hypocretin-1. It was found that (1) hypothalamic stimulation produced a complex sequence of depolarizing- hyperpolarizing potentials in spinal motoneurons; (2) the depolarizing potentials decreased in amplitude after the application of SB-334867, a hypocretin type 1 receptor antagonist; (3) the EPSP induced by dorsal root stimulation was not affected by the application of SB-334867; (4) subthreshold stimulation of dorsal roots and intracellular depolarizing current steps produced spike potentials when applied in concert to stimulation of the hypothalamus or after the local application of hypocretin-1; (5) the juxtacellular application of hypocretin-1 induced motoneuron depolarization and, frequently, high-frequency discharge; (6) hypocretin-1 produced a significant decrease in rheobase (36%), membrane time constant (16.4%), and the equalizing time constant (23.3%); (7) in a small number of motoneurons, hypocretin-1 produced an increase in the synaptic noise; and (8) the input resistance was not affected after hypocretin-1. The juxtacellular application of vehicle (saline) and denatured hypocretin-1 did not produce changes in the preceding electrophysiological properties. We conclude that hypothalamic hypocretinergic neurons are capable of modulating the activity of lumbar motoneurons through presynaptic and postsynaptic mechanisms. The lack of hypocretin-induced facilitation of motoneurons may be a critical component of the pathophysiology of cataplexy.


The Journal of Neuroscience | 2004

Interactions between GABAergic and Cholinergic Processes in the Nucleus Pontis Oralis: Neuronal Mechanisms Controlling Active (Rapid Eye Movement) Sleep and Wakefulness

Ming-Chu Xi; Francisco R. Morales; Michael H. Chase

The cholinergic system within the nucleus pontis oralis (NPO) of the pontine tegmentum is critically involved in the generation of active (rapid eye movement) sleep. Previously, we demonstrated that a GABAergic system in the NPO also plays an important role in the control of the behavioral states of wakefulness as well as active sleep. The present study examined interactions between these two neuronal systems vis-à-vis the occurrence of these behavioral states. Accordingly, cholinergic and GABAergic agonists and antagonists were injected into the NPO, and their combined effects on sleep and waking states of chronic, unanesthetized cats were examined. Microinjections of carbachol into the NPO elicited active sleep with a short latency. However, a preinjection of muscimol (a GABAA agonist) completely blocked the active sleep-inducing effects of carbachol. The induction of active sleep by carbachol was also suppressed by a subsequent injection of muscimol. On the other hand, the microinjection of scopolamine (a muscarinic receptor antagonist) did not block the induction of active sleep by bicuculline (a GABAA antagonist). We conclude that the excitatory cholinergic control of NPO neurons that are involved in the generation of active sleep is gated by a pontine GABAergic system that exerts its effects postsynaptically by inhibiting NPO neurons, resulting in the suppression of active sleep and the generation of wakefulness. In the absence of the activation of this GABAergic gating mechanism, active sleep occurs. These results reveal that specific interactions between cholinergic and GABAergic processes in the NPO play a critical role in the generation of active sleep and wakefulness.


Brain Research | 2000

Changes in electrophysiological properties of cat hypoglossal motoneurons during carbachol-induced motor inhibition.

Simon J. Fung; Jack Yamuy; Ming-Chu Xi; John K. Engelhardt; Francisco R. Morales; Michael H. Chase

The control of hypoglossal motoneurons during sleep is important from a basic science perspective as well as to understand the bases for pharyngeal occlusion which results in the obstructive sleep apnea syndrome. In the present work, we used intracellular recording techniques to determine changes in membrane properties in adult cats in which atonia was produced by the injection of carbachol into the pontine tegmentum (AS-carbachol). During AS-carbachol, 86% of the recorded hypoglossal motoneurons were found to be postsynaptically inhibited on the basis of analyses of their electrical properties; the electrical properties of the remaining 14% were similar to motoneurons recorded during control conditions. Those cells that exhibited changes in their electrical properties during AS-carbachol also displayed large-amplitude inhibitory synaptic potentials. Following sciatic nerve stimulation, hypoglossal motoneurons which responded with a depolarizing potential during control conditions exhibited a hyperpolarizing potential during AS-carbachol. Both spontaneous and evoked inhibitory potentials recorded during AS-carbachol were comparable to those that have been previously observed in trigeminal and spinal cord motoneurons under similar experimental conditions as well as during naturally occurring active sleep. Calculations based on modeling the changes that we found in input resistance and membrane time constant with a three-compartment neuron model suggest that shunts are present in all three compartments of the hypoglossal motoneuron model. Taken together, these data indicate that postsynaptic inhibitory drives are widely distributed on the soma-dendritic tree of hypoglossal motoneurons during AS-carbachol. These postsynaptic inhibitory actions are likely to be involved in the pathophysiology of obstructive sleep apnea.


Neuroscience | 1999

Changes in the axonal conduction velocity of pyramidal tract neurons in the aged cat

Ming-Chu Xi; Rong-Huan Liu; John K. Engelhardt; Francisco R. Morales; Michael H. Chase

The present study was undertaken to determine whether age-dependent changes in axonal conduction velocity occur in pyramidal tract neurons. A total of 260 and 254 pyramidal tract neurons were recorded extracellularly in the motor cortex of adult control and aged cats, respectively. These cells were activated antidromically by electrical stimulation of the medullary pyramidal tract. Fast- and slow-conducting neurons were identified according to their axonal conduction velocity in both control and aged cats. While 51% of pyramidal tract neurons recorded in the control cats were fast conducting (conduction velocity greater than 20 m/s), only 26% of pyramidal tract neurons in the aged cats were fast conducting. There was a 43% decrease in the median conduction velocity for the entire population of pyramidal tract neurons in aged cats when compared with that of pyramidal tract neurons in the control cats (P < 0.001, Mann-Whitney U-test). A linear relationship between the spike duration of pyramidal tract neurons and their antidromic latency was present in both control and aged cats. However, the regression slope was significantly reduced in aged cats. This reduction was due to the appearance of a group of pyramidal tract neurons with relatively shorter spike durations but slower axonal conduction velocities in the aged cat. Sample intracellular data confirmed the above results. These observations form the basis for the following conclusions: (i) there is a decrease in median conduction velocity of pyramidal tract neurons in aged cats; (ii) the reduction in the axonal conduction velocity of pyramidal tract neurons in aged cats is due, in part, to fibers that previously belonged to the fast-conducting group and now conduct at slower velocity.


Brain Research | 2007

Apnea promotes glutamate-induced excitotoxicity in hippocampal neurons.

Simon J. Fung; Ming-Chu Xi; Jian-Hua Zhang; Sharon Sampogna; Jack Yamuy; Francisco R. Morales; Michael H. Chase

Patients with obstructive sleep apnea (OSA) exhibit hippocampal damage and cognitive deficits. To determine the effect of apnea on the synaptic transmission in the hippocampus, we performed electrophysiological studies in an in vivo guinea pig model of OSA. Specifically, we determined the cornu ammonis region 1 (CA1) field excitatory postsynaptic potential (fEPSP) response to cornu ammonis region 3 (CA3) stimulation and examined the presynaptic mechanisms underlying the changes in the fEPSP. Single episodes of apnea resulted in a maximal potentiation of the fEPSPs at 1 to 3 min after the termination of each episode of apnea. The mean amplitude and slope of the post-apneic fEPSP was significantly larger compared with the pre-apneic control. These changes were accompanied by a significant decrease in the paired-pulse facilitation ratio during the post-apneic period compared with the pre-apneic control. The N-methyl-D-aspartate (NMDA) glutamate receptor antagonist MK-801, when applied locally to the CA1 recording site by pressure ejection, blocked the apnea-induced potentiation of the fEPSP. In the experimental animals that were subjected to extended periods of recurrent apnea, CA1 neurons exhibited positive immunoreactivity for fragmented DNA strands, which indicates apoptotic cell death. The present results demonstrate that apnea-induced potentiation of the hippocampal CA1 fEPSP is mediated by an NMDA receptor mechanism. We therefore conclude that recurrent apnea produces abnormally high levels of glutamate that results in the apoptosis of CA1 neurons. We hypothesize that this damage is reflected by the cognitive deficits that are commonly observed in patients with breathing disorders such as OSA.


Brain Research | 2003

Hypocretinergic facilitation of synaptic activity of neurons in the nucleus pontis oralis of the cat.

Ming-Chu Xi; Simon J. Fung; Jack Yamuy; Francisco R. Morales; Michael H. Chase

The present study was undertaken to explore the neuronal mechanisms of hypocretin actions on neurons in the nucleus pontis oralis (NPO), a nucleus which plays a key role in the generation of active (REM) sleep. Specifically, we sought to determine whether excitatory postsynaptic potentials (EPSPs) evoked by stimulation of the laterodorsal tegmental nucleus (LDT) and spontaneous EPSPs in NPO neurons are modulated by hypocretin. Accordingly, recordings were obtained from NPO neurons in the cat in conjunction with the juxtacellular microinjection of hypocretin-1 onto intracellularly recorded cells. The application of hypocretin-1 significantly increased the mean amplitude of LDT-evoked EPSPs of NPO neurons. In addition, the frequency and the amplitude of spontaneous EPSPs in NPO neurons increased following hypocretin-1 administration. These data suggest that hypocretinergic processes in the NPO are capable of modulating the activity of NPO neurons that receive excitatory cholinergic inputs from neurons in the LDT.


Neurobiology of Disease | 2010

Apnea produces neuronal degeneration in the pons and medulla of guinea pigs

Jian-Hua Zhang; Simon J. Fung; Ming-Chu Xi; Sharon Sampogna; Michael H. Chase

Obstructive sleep apnea and other sleep-related breathing disorders result in recurrent periods of oxygen deprivation (hypoxia), hypercapnia and an increase in the cellular production of reactive oxygen species (oxidative stress-related injury). Individuals with these disorders suffer from a variety of cellular abnormalities that result in cardiopulmonary dysfunctions, disturbances in sleep and other pathologies. In the present experiment, using an animal model of sleep apnea, we determined that the degeneration of neurons and glia, due to apoptosis, occurs in specific regions of the pons and medulla. Adult guinea pigs, which were divided into control (normoxic) and experimental (hypoxic) groups, were anesthetized with alpha-chloralose and immobilized with Flaxedil. Apnea (hypoxia) was induced by ventilatory arrest in order to desaturate the oxyhemoglobin to 75% SpO(2). A sequence of apnea, followed by ventilation with recovery to >95% SpO(2), was repeated for a period of 3h. At the end of the period of recurrent apnea, the animals were perfused and brain sections were immunostained with a mouse monoclonal antibody raised against single-stranded DNA (ssDNA). Apoptotic neurons and glia, which were not found in the control group of animals, were present in brainstem regions in hypoxic group of animals; these regions involved in the control of respiration (e.g., the parafacial respiratory group and the ventral respiratory group), cardiovascular functions (e.g., the nucleus ambiguus, the nucleus tractus solitarius and the dorsal motor nucleus of the vagus) as well as REM sleep (the nucleus pontis oralis) and wakefulness (e.g., the dorsal raphe and locus ceruleus). We suggest apoptotic neurons and glia in critical areas of the pons and medulla results in many of the comorbidities experienced by patients with sleep-disordered breathing pathologies.


Journal of Neuroscience Research | 2011

Projection neurons from the central nucleus of the amygdala to the nucleus pontis oralis

Simon J. Fung; Ming-Chu Xi; Jian-Hua Zhang; Pablo Torterolo; Sharon Sampogna; Francisco R. Morales; Michael H. Chase

The present retrograde labeling study was designed to determine the presence and pattern of projections from individual subdivisions of the central nucleus of the amygdala (CNA) to the nucleus pontis oralis (NPO), which is a critical brainstem site involved in the generation and maintenance of active (REM) sleep. Projections from the CNA were labeled with the retrograde tracer cholera toxin B‐subunit (CTB), which was injected, unilaterally, via microiontophoresis, into the NPO. Sections of the amygdala were immunostained in order to identify CTB‐labeled CNA neurons and CNA neurons that contained CTB plus the vesicular glutamate transporter 2 (VGLUT2), which is a marker for glutamatergic neurons. Histological analyses revealed that retrogradely labeled neurons that project to the NPO were localized, ipsilaterally, within the medial, lateral, and capsular subdivisions of the CNA. In addition, a substantial proportion (24%) of all retrogradely labeled CNA neurons also exhibited VGLUT2 immunoreactivity. The present study demonstrates that glutamatergic neurons, which are present within various subdivisions of the CNA, project directly to the NPO. These data lend credence to the hypothesis that NPO neurons that are involved in the control of active sleep are activated by glutamatergic projections from the amygdala.

Collaboration


Dive into the Ming-Chu Xi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack Yamuy

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian-Hua Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rong-Huan Liu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Kerch Engelhardt

City of Hope National Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge