Ming Chuang
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ming Chuang.
Medical Physics | 2009
B. Wu; F. Ricchetti; Giuseppe Sanguineti; Misha Kazhdan; Patricio D. Simari; Ming Chuang; Russell H. Taylor; Robert Jacques; Todd McNutt
PURPOSE Intensity modulated radiation therapy (IMRT) treatment plan quality depends on the planners level of experience and the amount of time the planner invests in developing the plan. Planners often unwittingly accept plans when further sparing of the organs at risk (OARs) is possible. The authors propose a method of IMRT treatment plan quality control that helps planners to evaluate the doses of the OARs upon completion of a new plan. METHODS It is achieved by comparing the geometric configurations of the OARs and targets of a new patient with those of prior patients, whose plans are maintained in a database. They introduce the concept of a shape relationship descriptor and, specifically, the overlap volume histogram (OVH) to describe the spatial configuration of an OAR with respect to a target. The OVH provides a way to infer the likely DVHs of the OARs by comparing the relative spatial configurations between patients. A database of prior patients is built to serve as an external reference. At the conclusion of a new plan, planners search through the database and identify related patients by comparing the OAR-target geometric relationships of the new patient with those of prior patients. The treatment plans of these related patients are retrieved from the database and guide planners in determining whether lower doses delivered to the OARs in the new plan are feasible. RESULTS Preliminary evaluation is promising. In this evaluation, they applied the analysis to the parotid DVHs of 32 prior head-and-neck patients, whose plans are maintained in a database. Each parotid was queried against the other 63 parotids to determine whether a lower dose was possible. The 17 parotids that promised the greatest reduction in D50 (DVH dose at 50% volume) were flagged. These 17 parotids came from 13 patients. The method also indicated that the doses of the other nine parotids of the 13 patients could not be reduced, so they were included in the replanning process as controls. Replanning with an effort to reduce D50 was conducted on these 26 parotids. After replanning, the average reductions for D50 of the 17 flagged parotids and nine unflagged parotids were 6.6 and 1.9 Gy, respectively. These results demonstrate that the quality control method has accurately identified not only the parotids that require dose reductions but also those for which dose reductions are marginal. Originally, 11 of out the 17 flagged parotids did not meet the Radiation Therapy Oncology Group sparing goal of V(30 Gy) < 50%. Replanning reduced them to three. Additionally, PTV coverage and OAR sparing of the original plans were compared to those of the replans by using pairwise Wilcoxon p test. The statistical comparisons show that replanning compromised neither PTV coverage nor OAR sparing. CONCLUSIONS This method provides an effective quality control mechanism for evaluating the DVHs of the OARs. Adoption of such a method will advance the quality of current IMRT planning, providing better treatment plan consistency.
international conference on computer graphics and interactive techniques | 2015
Alvaro Collet; Ming Chuang; Pat Sweeney; Don Gillett; Dennis Evseev; David Calabrese; Hugues Hoppe; Adam G. Kirk; Steve Sullivan
We present the first end-to-end solution to create high-quality free-viewpoint video encoded as a compact data stream. Our system records performances using a dense set of RGB and IR video cameras, generates dynamic textured surfaces, and compresses these to a streamable 3D video format. Four technical advances contribute to high fidelity and robustness: multimodal multi-view stereo fusing RGB, IR, and silhouette information; adaptive meshing guided by automatic detection of perceptually salient areas; mesh tracking to create temporally coherent subsequences; and encoding of tracked textured meshes as an MPEG video stream. Quantitative experiments demonstrate geometric accuracy, texture fidelity, and encoding efficiency. We release several datasets with calibrated inputs and processed results to foster future research.
symposium on geometry processing | 2009
Ming Chuang; Linjie Luo; Benedict J. Brown; Szymon Rusinkiewicz; Michael M. Kazhdan
We present a novel approach for computing and solving the Poisson equation over the surface of a mesh. As in previous approaches, we define the Laplace‐Beltrami operator by considering the derivatives of functions defined on the mesh. However, in this work, we explore a choice of functions that is decoupled from the tessellation. Specifically, we use basis functions (second‐order tensor‐product B‐splines) defined over 3D space, and then restrict them to the surface. We show that in addition to being invariant to mesh topology, this definition of the Laplace‐Beltrami operator allows a natural multiresolution structure on the function space that is independent of the mesh structure, enabling the use of a simple multigrid implementation for solving the Poisson equation.
medical image computing and computer assisted intervention | 2009
Michael M. Kazhdan; Patricio D. Simari; T.R. McNutt; B. Wu; Robert Jacques; Ming Chuang; Russell H. Taylor
In this paper we address the challenge of matching patient geometry to facilitate the design of patient treatment plans in radiotherapy. To this end we propose a novel shape descriptor, the Overlap Volume Histogram, which provides a rotation and translation invariant representation of a patients organs at risk relative to the tumor volume. Using our descriptor, it is possible to accurately identify database patients with similar constellations of organ and tumor geometries, enabling the transfer of treatment plans between patients with similar geometries, We demonstrate the utility of our method for such tasks by outperforming state of the art shape descriptors in the retrieval of patients with similar treatment plans. We also preliminarily show its potential as a quality control tool by demonstrating how it is used to identify an organ at risk whose dose can be significantly reduced.
international conference on computer graphics and interactive techniques | 2011
Ming Chuang; Michael M. Kazhdan
We present a general framework for performing geometry filtering through the solution of a screened Poisson equation. We show that this framework can be efficiently adapted to a changing Riemannian metric to support curvature-aware filtering and describe a parallel and streaming multigrid implementation for solving the system. We demonstrate the practicality of our approach by developing an interactive system for mesh editing that allows for exploration of a large family of curvature-guided, anisotropic filters.
international conference on computer graphics and interactive techniques | 2016
Fabian Prada; Misha Kazhdan; Ming Chuang; Alvaro Collet; Hugues Hoppe
Scanned performances are commonly represented in virtual environments as sequences of textured triangle meshes. Detailed shapes deforming over time benefit from meshes with dynamically evolving connectivity. We analyze these unstructured mesh sequences to automatically synthesize motion graphs with new smooth transitions between compatible poses and actions. Such motion graphs enable natural periodic motions, stochastic playback, and user-directed animations. The main challenge of unstructured sequences is that the meshes differ not only in connectivity but also in alignment, shape, and texture. We introduce new geometry processing techniques to address these problems and demonstrate visually seamless transitions on high-quality captures.
Computer Graphics Forum | 2011
Ming Chuang; Michael M. Kazhdan
In this paper, we present a novel approach for efficiently evolving meshes using mean‐curvature flow. We use a finite‐elements hierarchy that supports an efficient multigrid solver for performing the semi‐implicit time‐stepping. Although expensive to compute, we show that it is possible to track this hierarchy through the process of surface evolution. As a result, we provide a way to efficiently flow the surface through the evolution, without requiring a costly initialization at the beginning of each time‐step. Using our approach, we demonstrate a factor of nearly seven‐fold improvement over the non‐tracking implementation, supporting the evolution of surfaces consisting of 1M triangles at a rate of just a few seconds per update.
ACM Transactions on Graphics | 2017
Fabian Prada; Misha Kazhdan; Ming Chuang; Alvaro Collet; Hugues Hoppe
We convert a sequence of unstructured textured meshes into a mesh with incrementally changing connectivity and atlas parameterization. Like prior work on surface tracking, we seek temporally coherent mesh connectivity to enable efficient representation of surface geometry and texture. Like recent work on evolving meshes, we pursue local remeshing to permit tracking over long sequences containing significant deformations or topological changes. Our main contribution is to show that both goals are realizable within a common framework that simultaneously evolves both the set of mesh triangles and the parametric map. Sparsifying the remeshing operations allows the formation of large spatiotemporal texture charts. These charts are packed as prisms into a 3D atlas for a texture video. Reducing tracking drift using mesh-based optical flow helps improve compression of the resulting video stream.
interactive 3d graphics and games | 2018
Ruofei Du; Ming Chuang; Wayne Chang; Hugues Hoppe; Amitabh Varshney
The commoditization of virtual and augmented reality devices and the availability of inexpensive consumer depth cameras have catalyzed a resurgence of interest in spatiotemporal performance capture. Recent systems like Fusion4D and Holoportation address several crucial problems in the real-time fusion of multiview depth maps into volumetric and deformable representations. Nonetheless, stitching multiview video textures onto dynamic meshes remains challenging due to imprecise geometries, occlusion seams, and critical time constraints. In this paper, we present a practical solution towards real-time seamless texture montage for dynamic multiview reconstruction. We build on the ideas of dilated depth discontinuities and majority voting from Holoportation to reduce ghosting effects when blending textures. In contrast to their approach, we determine the appropriate blend of textures per vertex using view-dependent rendering techniques, so as to avert fuzziness caused by the ubiquitous normal-weighted blending. By leveraging geodesics-guided diffusion and temporal texture fields, our algorithm mitigates spatial occlusion seams while preserving temporal consistency. Experiments demonstrate significant enhancement in rendering quality, especially in detailed regions such as faces. We envision a wide range of applications for Montage4D, including immersive telepresence for business, training, and live entertainment.
international conference on computer graphics and interactive techniques | 2018
Fabian Prada; Michael M. Kazhdan; Ming Chuang; Hugues Hoppe
Processing signals on surfaces often involves resampling the signal over the vertices of a dense mesh and applying mesh-based filtering operators. We present a framework to process a signal directly in a texture atlas domain. The benefits are twofold: avoiding resampling degradation and exploiting the regularity of the texture image grid. The main challenges are to preserve continuity across atlas chart boundaries and to adapt differential operators to the non-uniform parameterization. We introduce a novel function space and multigrid solver that jointly enable robust, interactive, and geometry-aware signal processing. We demonstrate our approach using several applications including smoothing and sharpening, multiview stitching, geodesic distance computation, and line integral convolution.