Ming-Hsi Huang
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ming-Hsi Huang.
PLOS ONE | 2011
Shih-Chang Lin; Ming-Hsi Huang; Pei-Chun Tsou; Li-Min Huang; Pele Chong; Suh-Chin Wu
Background The highly pathogenic avian influenza (HPAI) H5N1 virus continues to cause disease in poultry and humans. The hemagglutinin (HA) envelope protein is the primary target for subunit vaccine development. Methodology/Principal Findings We used baculovirus-insect cell expression to obtain trimeric recombinant HA (rHA) proteins from two HPAI H5N1 viruses. We investigated trimeric rHA protein immunogenicity in mice via immunizations, and found that the highest levels of neutralizing antibodies resulted from coupling with a PELC/CpG adjuvant. We also found that the combined use of trimeric rHA proteins with (a) an inactivated H5N1 vaccine virus, or (b) a recombinant adenovirus encoding full-length HA sequences for prime-boost immunization, further improved antibody responses against homologous and heterologous H5N1 virus strains. Data from cross-clade prime-boost immunization regimens indicate that sequential immunization with different clade HA antigens increased antibody responses in terms of total IgG level and neutralizing antibody titers. Conclusion/Significance Our findings suggest that the use of trimeric rHA in prime-boost vaccine regimens represents an alternative strategy for recombinant H5N1 vaccine development.
PLOS ONE | 2010
Ming-Hsi Huang; Su-Chen Lin; Chia-Hsin Hsiao; Hsin-Ju Chao; Hung-Ren Yang; Chien-Chun Liao; Po-Wei Chuang; Huang-Pi Wu; Chiung-Yi Huang; Chih-Hsiang Leng; Shih-Jen Liu; Hsin-Wei Chen; Ai-Hsiang Chou; Alan Yung-Chih Hu; Pele Chong
Background Antigen sparing and cross-protective immunity are regarded as crucial in pandemic influenza vaccine development. Both targets can be achieved by adjuvantation strategy to elicit a robust and broadened immune response. We assessed the immunogenicity of an inactivated H5N1 whole-virion vaccine (A/Vietnam/1194/2004 NIBRG-14, clade 1) formulated with emulsified nanoparticles and investigated whether it can induce cross-clade protecting immunity. Methodology/Principal Findings After formulation with PELC, a proprietary water-in-oil-in-water nanoemulsion comprising of bioresorbable polymer/Span®85/squalene, inactivated virus was intramuscularly administered to mice in either one-dose or two-dose schedule. We found that the antigen-specific serum antibody responses elicited after two doses of non-adjuvanted vaccine were lower than those observed after a single dose of adjuvanted vaccine, PELC and the conventional alum adjuvant as well. Moreover, 5 µg HA of PELC-formulated inactivated virus were capable of inducing higher antibodies than those obtained from alum-adjuvanted vaccine. In single-dose study, we found that encapsulating inactivated virus into emulsified PELC nanoparticles could induce better antibody responses than those formulated with PELC-adsorbed vaccine. However, the potency was rather reduced when the inactivated virus and CpG (an immunostimulatory oligodeoxynucleotide containing unmethylated cytosine-guanosine motifs) were co-encapsulated within the emulsion. Finally, the mice who received PELC/CpG(adsorption)-vaccine could easily and quickly reach 100% of seroprotection against a homologous virus strain and effective cross-protection against a heterologous virus strain (A/Whooper swan/Mongolia/244/2005, clade 2.2). Conclusions/Significance Encapsulating inactivated H5N1 influenza virus and CpG into emulsified nanoparticles critically influences the humoral responses against pandemic influenza. These results demonstrated that the use of PELC could be as antigen-sparing in preparation for a potential shortage of prophylactic vaccines against local infectious diseases, in particular pandemic influenza. Moreover, the cross-clade neutralizing antibody responses data verify the potential of such adjuvanted H5N1 candidate vaccine as an effective tool in pre-pandemic preparedness.
PLOS Neglected Tropical Diseases | 2012
Chen-Yi Chiang; Ming-Hsi Huang; Chun-Hsiang Hsieh; Mei-Yu Chen; Hsueh-Hung Liu; Jy-Ping Tsai; Yi-Shiuan Li; Ching-Yun Chang; Shih-Jen Liu; Pele Chong; Chih-Hsiang Leng; Hsin-Wei Chen
The major weaknesses of subunit vaccines are their low immunogenicity and poor efficacy. Adjuvants can help to overcome some of these inherent defects with subunit vaccines. Here, we evaluated the efficacy of the newly developed water-in-oil-in-water multiphase emulsion system, termed PELC, in potentiating the protective capacity of dengue-1 envelope protein domain III. Unlike aluminum phosphate, dengue-1 envelope protein domain III formulated with PELC plus CpG oligodeoxynucleotides induced neutralizing antibodies against dengue-1 virus and increased the splenocyte secretion of IFN-γ after in vitro re-stimulation. The induced antibodies contained both the IgG1 and IgG2a subclasses. A rapid anamnestic neutralizing antibody response against a live dengue virus challenge was elicited at week 26 after the first immunization. These results demonstrate that PELC plus CpG oligodeoxynucleotides broaden the dengue-1 envelope protein domain III-specific immune responses. PELC plus CpG oligodeoxynucleotides is a promising adjuvant for recombinant protein based vaccination against dengue virus.
Journal of Controlled Release | 2014
Ying-Chyi Song; Han-Yin Cheng; Chih-Hsiang Leng; Sheng-Kuo Chiang; Chih-Wei Lin; Pele Chong; Ming-Hsi Huang; Shih-Jen Liu
PELC is a novel emulsion-type adjuvant that contains the bioresorbable polymer poly (ethylene glycol)-block-poly (lactide-co-ε-caprolactone) (PEG-b-PLACL), Span®85 and squalene. To investigate whether PELC is able to enhance CTL responses of antigens for treating tumor, peptides or protein antigens derived from HPV16 E7 were formulated with PELC nanoparticles and CpG oligodeoxynucleotide. We identified that PELC formulation could delay the release of antigens in vitro and in vivo. We assessed the immunogenicity of an H-2D(b)-restricted CTL epitope RAHYNIVTF (RAH) formulated with PELC or PELC/CpG and investigated the ability of these formulations to promote tumor regression. Following a single-dose subcutaneous injection in mice, we found that the RAH peptide formulated with PELC/CpG (RAH/PELC/CpG) resulted in increased numbers of IFN-γ-secreting cells and RAH-specific CD8(+) T cells and an enhanced cytotoxic T cell response compared with RAH formulated with PELC or CpG alone. The tumor-bearing mice received a single-dose injection of RAH/PELC/CpG, which induced complete tumor regression. These results demonstrated that peptide antigen formulated with PELC/CpG nanoparticles is feasible for cancer immunotherapy.
PLOS ONE | 2013
Shih-Chang Lin; Jia-Tsrong Jan; Ben Dionne; Michael Butler; Ming-Hsi Huang; Chung-Yi Wu; Chi-Huey Wong; Suh-Chin Wu
Highly pathogenic avian influenza H5N1 viruses can result in poultry and occasionally in human mortality. A safe and effective H5N1 vaccine is urgently needed to reduce the pandemic potential. Hemagglutinin (HA), a major envelope protein accounting for approximately 80% of spikes in influenza virus, is often used as a major antigen for subunit vaccine development. In this study, we conducted a systematic study of the immune response against influenza virus infection following immunization with recombinant HA proteins expressed in insect (Sf9) cells, insect cells that contain exogenous genes for elaborating N-linked glycans (Mimic) and mammalian cells (CHO). While the antibody titers are higher with the insect cell derived HA proteins, the neutralization and HA inhibition titers are much higher with the mammalian cell produced HA proteins. Recombinant HA proteins containing tri- or tetra-antennary complex, terminally sialylated and asialyated-galactose type N-glycans induced better protective immunity in mice to lethal challenge. The results are highly relevant to issues that should be considered in the production of fragment vaccines.
Microbes and Infection | 2009
Ming-Hsi Huang; Chiung-Yi Huang; Su-Chen Lin; Jia-Huey Chen; Chien-Chun Ku; Ai-Hsiang Chou; Shih-Jen Liu; Hsin-Wei Chen; Pele Chong; Chih-Hsiang Leng
Vaccine shortages are a major obstacle to influenza pandemic preparedness. Increasing vaccine efficiency provides a potentially effective way to overcome this problem. Specifically, using single-dose immunization to induce protective immunity is an attractive approach to emergency/massive vaccination. In this report, we propose a novel nanoemulsion comprised of the bioresorbable polymer, Span 85, and squalene forming a ready-to-use adjuvant, called PELC. After formulation with PELC, inactivated H5N1 virus was intramuscularly administered to mice via a single injection. The data demonstrate that inactivated virus containing 0.5microg hemagglutinin (HA) and formulated with PELC induced more potent antigen-specific antibodies, hemagglutination inhibition, and virus neutralization than non-adjuvanted inactivated virus containing 5microg HA. In addition, T-cell proliferative responses, as well as interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) secretion were significantly enhanced after immunization with PELC-adjuvanted inactivated virus. These results indicate that PELC can be used for effective single-dose immunization and could thus play an important role in influenza pandemic preparedness.
Journal of Biomedical Materials Research Part B | 2009
Ming-Hsi Huang; Ai-Hsiang Chou; Shu-Pei Lien; Hsin-Wei Chen; Chiung-Yi Huang; Wei-Wen Chen; Pele Chong; Shih-Jen Liu; Chih-Hsiang Leng
Novel emulsion-type vaccine delivery systems based on the amphiphilic bioresorbable polymer poly(ethylene glycol)-block-poly(lactide-co-epsilon-caprolactone) (PEG-b-PLACL) and selected oils were developed here. Physicochemical characterizations such as stability, a droplet test, microscopic aspects, and in vitro release showed that PEG-b-PLACL-emulsified formulations have several advantages over traditional vaccine adjuvants in that they are stable, reproducible, and homogeneous fine particles with an appropriate size to facilitate the induction of potent immune responses. Different dispersion-type emulsions have provided different release profiles using ovalbumin in model studies. Immunogenicity studies in mice have shown that antigen-specific antibody titers and T-cell proliferative responses, as well as the secretion of IFN-gamma, were significantly enhanced for ovalbumin after formulation with PEG-b-PLACL-based emulsions. These features are of great interest for applications in delivery systems of prophylactic and therapeutic vaccine candidates.
Biomacromolecules | 2015
Fanny Coumes; Chiung-Yi Huang; Chung-Hsiung Huang; Jean Coudane; Dominique Domurado; Suming Li; Vincent Darcos; Ming-Hsi Huang
Cancer vaccines are considered to be a promising tool for cancer immunotherapy. However, a well-designed cancer vaccine should combine a tumor-associated antigen (TAA) with the most effective immunomodulatory agents and/or delivery system to provoke intense immune responses against the TAA. In the present study, we introduced a new approach by conjugating the immunomodulatory molecule LD-indolicidin to the hydrophilic chain end of the polymeric emulsifier poly(ethylene glycol)-polylactide (PEG-PLA), allowing the molecule to be located close to the surface of the resulting emulsion. A peptide/polymer conjugate, named LD-indolicidin-PEG-PLA, was synthesized by conjugation of the amine end-group of LD-indolicidin to the N-hydroxysuccinimide-activated carboxyl end-group of PEG. As an adjuvant for cancer immunotherapeutic use, TAA vaccine candidate formulated with the LD-indolicidin-PEG-PLA-stabilized squalene-in-water emulsion could effectively help to elicit a T helper (Th)1-dominant antigen-specific immune response as well as antitumor ability, using ovalbumin (OVA) protein/EG7 cells as a TAA/tumor cell model. Taken together, these results open up a new approach to the development of immunomodulatory antigen delivery systems for vaccine adjuvants and cancer immunotherapy technologies.
Journal of Leukocyte Biology | 2011
Ying-Chyi Song; Ai-Hsiang Chou; Atthachai Homhuan; Ming-Hsi Huang; Sheng-Kuo Chiang; Kuan-Yin Shen; Po-Wei Chuang; Chih-Hsiang Leng; Mi-Hua Tao; Pele Chong; Shih-Jen Liu
Cross‐presentation by DCs is the major mechanism by which exogenous antigens activate CTLs. However, the mechanisms of entry and presentation of vaccine peptides by DCs remain unclear. In this study, we determined that the mechanisms of antigen presentation differed between nonlipidated and monopalmitoylated peptide antigens. We found that a nonlipidated long peptide could be taken up by DCs and that the peptide could be colocalized with early endosomes. The uptake of nonlipidated peptides by DCs was inhibited at low temperatures or by the depolymerization of actin filaments or microtubules. In contrast, lipidated peptides were internalized by DCs at low temperatures, and internalization was not inhibited when actin filaments or microtubules were depolymerized. Moreover, lipidated peptide, but not nonlipidated peptide, was internalized by nonphagocytic Jurkat cells. The endosomal/lysosomal and proteasomal degradation pathways were necessary for nonlipidated presentation leading to the activation of CD8+ T cells, but the proteasomal degradation pathway alone was sufficient to process lipidated peptides for MHC class I presentation. We further found that lipidated peptides could enhance peptide‐specific T cell responses in vitro and in vivo and induced stronger antitumor responses than nonlipidated peptides. Taken together, our results demonstrate that DCs present lipidated peptides through an endocytosis‐independent pathway to promote strong anti‐tumor effects in vivo.
BioMed Research International | 2014
Chih-Wei Lin; Chia-Chyi Liu; Tsung-Chun Lu; Shih-Jen Liu; Yen-Hung Chow; Pele Chong; Ming-Hsi Huang
We assessed two strategies for preparing candidate vaccines against hand, foot, and mouth disease (HFMD) caused mainly by infections of enterovirus (EV) 71 and coxsackievirus (CV) A16. We firstly design and optimize the potency of adjuvant combinations of emulsion-based delivery systems, using EV71 candidate vaccine as a model. We then perform immunogenicity studies in mice of EV71/CVA16 antigen combinations formulated with PELC/CpG. A single dose of inactivated EV71 virion (0.2 μg) emulsified in submicron particles was found (i) to induce potent antigen-specific neutralizing antibody responses and (ii) consistently to elicit broad antibody responses against EV71 neutralization epitopes. A single dose immunogenicity study of bivalent activated EV71/CVA16 virion formulated with either Alum or PELC/CpG adjuvant showed that CVA16 antigen failed to elicit CVA16 neutralizing antibody responses and did not affect EV71-specific neutralizing antibody responses. A boosting dose of emulsified EV71/CVA16 bivalent vaccine candidate was found to be necessary to achieve high seroconversion of CVA16-specific neutralizing antibody responses. The current results are important for the design and development of prophylactic vaccines against HFMD and other emerging infectious diseases.