Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ming-Hu Han is active.

Publication


Featured researches published by Ming-Hu Han.


Cell | 2007

Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions.

Vaishnav Krishnan; Ming-Hu Han; Danielle L. Graham; Olivier Berton; William Renthal; Scott J. Russo; Quincey LaPlant; Ami Graham; Michael Lutter; Diane C. Lagace; Subroto Ghose; Robin Reister; Paul Tannous; Thomas A. Green; Rachael L. Neve; Sumana Chakravarty; Arvind Kumar; Amelia J. Eisch; David W. Self; Francis S. Lee; Carol A. Tamminga; Donald C. Cooper; Howard K. Gershenfeld; Eric J. Nestler

While stressful life events are an important cause of psychopathology, most individuals exposed to adversity maintain normal psychological functioning. The molecular mechanisms underlying such resilience are poorly understood. Here, we demonstrate that an inbred population of mice subjected to social defeat can be separated into susceptible and unsusceptible subpopulations that differ along several behavioral and physiological domains. By a combination of molecular and electrophysiological techniques, we identify signature adaptations within the mesolimbic dopamine circuit that are uniquely associated with vulnerability or insusceptibility. We show that molecular recapitulations of three prototypical adaptations associated with the unsusceptible phenotype are each sufficient to promote resistant behavior. Our results validate a multidisciplinary approach to examine the neurobiological mechanisms of variations in stress resistance, and illustrate the importance of plasticity within the brains reward circuits in actively maintaining an emotional homeostasis.


Science | 2010

Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward.

Mary Kay Lobo; Herbert E. Covington; Dipesh Chaudhury; Allyson K. Friedman; HaoSheng Sun; Diane Damez-Werno; David M. Dietz; Samir Zaman; Ja Wook Koo; Pamela J. Kennedy; Ezekiell Mouzon; Murtaza Mogri; Rachael L. Neve; Karl Deisseroth; Ming-Hu Han; Eric J. Nestler

BDNF, Dopamine, and Cocaine Reward The nucleus accumbens plays a crucial role in mediating the rewarding effects of drugs of abuse. Different subpopulations of nucleus accumbens projection neurons exhibit balanced but antagonistic influences on their downstream outputs and behaviors. However, their roles in regulating reward behaviors remains unclear. Lobo et al. (p. 385) evaluated the roles of the two subtypes of nucleus accumbens projection neurons, those expressing dopamine D1 versus D2 receptors, in cocaine reward. Deleting TrkB, the receptor for brain-derived neurotrophic factor, selectively in each cell type, and selectively controlling the firing of each cell type using optogenetic techniques allowed for confirmation that D1- and D2-containing neurons produced opposite effects on cocaine reward. Selective manipulation of neuron subtypes produces opposite effects on behavioral responses to cocaine. The nucleus accumbens is a key mediator of cocaine reward, but the distinct roles of the two subpopulations of nucleus accumbens projection neurons, those expressing dopamine D1 versus D2 receptors, are poorly understood. We show that deletion of TrkB, the brain-derived neurotrophic factor (BDNF) receptor, selectively from D1+ or D2+ neurons oppositely affects cocaine reward. Because loss of TrkB in D2+ neurons increases their neuronal excitability, we next used optogenetic tools to control selectively the firing rate of D1+ and D2+ nucleus accumbens neurons and studied consequent effects on cocaine reward. Activation of D2+ neurons, mimicking the loss of TrkB, suppresses cocaine reward, with opposite effects induced by activation of D1+ neurons. These results provide insight into the molecular control of D1+ and D2+ neuronal activity as well as the circuit-level contribution of these cell types to cocaine reward.


Nature | 2012

Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons

Dipesh Chaudhury; Jessica J. Walsh; Allyson K. Friedman; Barbara Juarez; Stacy M. Ku; Ja Wook Koo; Deveroux Ferguson; Hsing-Chen Tsai; Lisa E. Pomeranz; Daniel J. Christoffel; Alexander R. Nectow; Mats I. Ekstrand; Ana I. Domingos; Michelle S. Mazei-Robison; Ezekiell Mouzon; Mary Kay Lobo; Rachael L. Neve; Jeffrey M. Friedman; Scott J. Russo; Karl Deisseroth; Eric J. Nestler; Ming-Hu Han

Ventral tegmental area (VTA) dopamine neurons in the brain’s reward circuit have a crucial role in mediating stress responses, including determining susceptibility versus resilience to social-stress-induced behavioural abnormalities. VTA dopamine neurons show two in vivo patterns of firing: low frequency tonic firing and high frequency phasic firing. Phasic firing of the neurons, which is well known to encode reward signals, is upregulated by repeated social-defeat stress, a highly validated mouse model of depression. Surprisingly, this pathophysiological effect is seen in susceptible mice only, with no apparent change in firing rate in resilient individuals. However, direct evidence—in real time—linking dopamine neuron phasic firing in promoting the susceptible (depression-like) phenotype is lacking. Here we took advantage of the temporal precision and cell-type and projection-pathway specificity of optogenetics to show that enhanced phasic firing of these neurons mediates susceptibility to social-defeat stress in freely behaving mice. We show that optogenetic induction of phasic, but not tonic, firing in VTA dopamine neurons of mice undergoing a subthreshold social-defeat paradigm rapidly induced a susceptible phenotype as measured by social avoidance and decreased sucrose preference. Optogenetic phasic stimulation of these neurons also quickly induced a susceptible phenotype in previously resilient mice that had been subjected to repeated social-defeat stress. Furthermore, we show differences in projection-pathway specificity in promoting stress susceptibility: phasic activation of VTA neurons projecting to the nucleus accumbens (NAc), but not to the medial prefrontal cortex (mPFC), induced susceptibility to social-defeat stress. Conversely, optogenetic inhibition of the VTA–NAc projection induced resilience, whereas inhibition of the VTA–mPFC projection promoted susceptibility. Overall, these studies reveal novel firing-pattern- and neural-circuit-specific mechanisms of depression.


Nature Neuroscience | 2012

Neurobiology of resilience

Scott J. Russo; James W. Murrough; Ming-Hu Han; Dennis S. Charney; Eric J. Nestler

Humans exhibit a remarkable degree of resilience in the face of extreme stress, with most resisting the development of neuropsychiatric disorders. Over the past 5 years, there has been increasing interest in the active, adaptive coping mechanisms of resilience; however, in humans, most published work focuses on correlative neuroendocrine markers that are associated with a resilient phenotype. In this review, we highlight a growing literature in rodents that is starting to complement the human work by identifying the active behavioral, neural, molecular and hormonal basis of resilience. The therapeutic implications of these findings are important and can pave the way for an innovative approach to drug development for a range of stress-related syndromes.


Nature Neuroscience | 2009

CREB regulation of nucleus accumbens excitability mediates social isolation-induced behavioral deficits

Deanna L. Wallace; Ming-Hu Han; Danielle L. Graham; Thomas A. Green; Vincent Vialou; Sergio D. Iñiguez; Jun-Li Cao; Anne Kirk; Sumana Chakravarty; Arvind Kumar; Vaishnav Krishnan; Rachael L. Neve; Donald C. Cooper; Carlos A. Bolaños; Michel Barrot; Colleen A. McClung; Eric J. Nestler

Here, we characterized behavioral abnormalities induced by prolonged social isolation in adult rodents. Social isolation induced both anxiety- and anhedonia-like symptoms and decreased cAMP response element–binding protein (CREB) activity in the nucleus accumbens shell (NAcSh). All of these abnormalities were reversed by chronic, but not acute, antidepressant treatment. However, although the anxiety phenotype and its reversal by antidepressant treatment were CREB-dependent, the anhedonia-like symptoms were not mediated by CREB in NAcSh. We found that decreased CREB activity in NAcSh correlated with increased expression of certain K+ channels and reduced electrical excitability of NAcSh neurons, which was sufficient to induce anxiety-like behaviors and was reversed by chronic antidepressant treatment. Together, our results describe a model that distinguishes anxiety- and depression-like behavioral phenotypes, establish a selective role of decreased CREB activity in NAcSh in anxiety-like behavior, and provide a mechanism by which antidepressant treatment alleviates anxiety symptoms after social isolation.


The Journal of Neuroscience | 2010

Mesolimbic Dopamine Neurons in the Brain Reward Circuit Mediate Susceptibility to Social Defeat and Antidepressant Action

Jun-Li Cao; Herbert E. Covington; Allyson K. Friedman; Matthew Wilkinson; Jessica J. Walsh; Donald C. Cooper; Eric J. Nestler; Ming-Hu Han

We previously reported that the activity of mesolimbic dopamine neurons of the ventral tegmental area (VTA) is a key determinant of behavioral susceptibility vs resilience to chronic social defeat stress. However, this was based solely on ex vivo measurements, and the in vivo firing properties of VTA dopamine neurons in susceptible and resilient mice, as well as the effects of antidepressant treatments, remain completely unknown. Here, we show that chronic (10 d) social defeat stress significantly increased the in vivo spontaneous firing rates and bursting events in susceptible mice but not in the resilient subgroup. Both the firing rates and bursting events were significantly negatively correlated with social avoidance behavior, a key behavioral abnormality induced by chronic social defeat stress. Moreover, the increased firing rates, bursting events, and avoidance behavior in susceptible mice were completely reversed by chronic (2 week), but not acute (single dose), treatments with the antidepressant medication fluoxetine (20 mg/kg). Chronic social defeat stress increased hyperpolarization-activated cation current (Ih) in VTA dopamine neurons, an effect that was also normalized by chronic treatment with fluoxetine. As well, local infusion of Ih inhibitors ZD7288 (0.1 μg) or DK-AH 269 (0.6 μg) into the VTA exerted antidepressant-like behavioral effects. Together, these data suggest that the firing patterns of mesolimbic dopamine neurons in vivo mediate an individuals responses to chronic stress and antidepressant action.


Nature Neuroscience | 2012

HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity.

Mitsumasa Kurita; Terrell Holloway; Aintzane García-Bea; Alexey Kozlenkov; Allyson K. Friedman; José L. Moreno; Mitra Heshmati; Sam A. Golden; Pamela J. Kennedy; Nagahide Takahashi; David M. Dietz; Giuseppe Mocci; Ane M. Gabilondo; James B. Hanks; Adrienne Umali; Luis F. Callado; Amelia L. Gallitano; Rachael L. Neve; Li Shen; Joseph D. Buxbaum; Ming-Hu Han; Eric J. Nestler; J. Javier Meana; Scott J. Russo; Javier González-Maeso

Histone deacetylases (HDACs) compact chromatin structure and repress gene transcription. In schizophrenia, clinical studies demonstrate that HDAC inhibitors are efficacious when given in combination with atypical antipsychotics. However, the molecular mechanism that integrates a better response to antipsychotics with changes in chromatin structure remains unknown. Here we found that chronic atypical antipsychotics downregulated the transcription of metabotropic glutamate 2 receptor (mGlu2, also known as Grm2), an effect that was associated with decreased histone acetylation at its promoter in mouse and human frontal cortex. This epigenetic change occurred in concert with a serotonin 5-HT2A receptor–dependent upregulation and increased binding of HDAC2 to the mGlu2 promoter. Virally mediated overexpression of HDAC2 in frontal cortex decreased mGlu2 transcription and its electrophysiological properties, thereby increasing psychosis-like behavior. Conversely, HDAC inhibitors prevented the repressive histone modifications induced at the mGlu2 promoter by atypical antipsychotics, and augmented their therapeutic-like effects. These observations support the view of HDAC2 as a promising new target for schizophrenia treatment.


The Journal of Neuroscience | 2011

IκB Kinase Regulates Social Defeat Stress-Induced Synaptic and Behavioral Plasticity

Daniel J. Christoffel; Sam A. Golden; Dani Dumitriu; Alfred J. Robison; William G.M. Janssen; H. Francisca Ahn; Vaishnav Krishnan; Cindy M. Reyes; Ming-Hu Han; Jessica L. Ables; Amelia J. Eisch; David M. Dietz; Deveroux Ferguson; Rachael L. Neve; Paul Greengard; Yong Kim; John H. Morrison; Scott J. Russo

The neurobiological underpinnings of mood and anxiety disorders have been linked to the nucleus accumbens (NAc), a region important in processing the rewarding and emotional salience of stimuli. Using chronic social defeat stress, an animal model of mood and anxiety disorders, we investigated whether alterations in synaptic plasticity are responsible for the long-lasting behavioral symptoms induced by this form of stress. We hypothesized that chronic social defeat stress alters synaptic strength or connectivity of medium spiny neurons (MSNs) in the NAc to induce social avoidance. To test this, we analyzed the synaptic profile of MSNs via confocal imaging of Lucifer-yellow-filled cells, ultrastructural analysis of the postsynaptic density, and electrophysiological recordings of miniature EPSCs (mEPSCs) in mice after social defeat. We found that NAc MSNs have more stubby spine structures with smaller postsynaptic densities and an increase in the frequency of mEPSCs after social defeat. In parallel to these structural changes, we observed significant increases in IκB kinase (IKK) in the NAc after social defeat, a molecular pathway that has been shown to regulate neuronal morphology. Indeed, we find using viral-mediated gene transfer of dominant-negative and constitutively active IKK mutants that activation of IKK signaling pathways during social defeat is both necessary and sufficient to induce synaptic alterations and behavioral effects of the stress. These studies establish a causal role for IKK in regulating stress-induced adaptive plasticity and may present a novel target for drug development in the treatment of mood and anxiety disorders in humans.


Science | 2014

Enhancing Depression Mechanisms in Midbrain Dopamine Neurons Achieves Homeostatic Resilience

Allyson K. Friedman; Jessica J. Walsh; Barbara Juarez; Stacy M. Ku; Dipesh Chaudhury; Jing Wang; Xianting Li; David M. Dietz; Nina Pan; Vincent Vialou; Rachael L. Neve; Zhenyu Yue; Ming-Hu Han

Resilient Hyperpolarization Despite constant exposure to all sorts of stressors, most people are resilient and do not develop depression, but we do not understand the neurophysiological underpinnings of stress resilience. Friedman et al. (p. 313) studied this phenomenon in a mouse model of social-defeat stress depression. In the mice they found that, despite apparently pathological levels of hyperpolarization and elevated potassium channel currents in the ventral tegmental area (a structure known to be involved in depression), resilient mice showed normal activity in dopaminergic neurons. Thus, if “depressed” mice were experimentally provoked into hyperpolarization—unexpectedly, they completely reversed depression-related behaviors. Intensifying pathogenic changes paradoxically ameliorate depressive symptoms in mice. Typical therapies try to reverse pathogenic mechanisms. Here, we describe treatment effects achieved by enhancing depression-causing mechanisms in ventral tegmental area (VTA) dopamine (DA) neurons. In a social defeat stress model of depression, depressed (susceptible) mice display hyperactivity of VTA DA neurons, caused by an up-regulated hyperpolarization-activated current (Ih). Mice resilient to social defeat stress, however, exhibit stable normal firing of these neurons. Unexpectedly, resilient mice had an even larger Ih, which was observed in parallel with increased potassium (K+) channel currents. Experimentally further enhancing Ih or optogenetically increasing the hyperactivity of VTA DA neurons in susceptible mice completely reversed depression-related behaviors, an antidepressant effect achieved through resilience-like, projection-specific homeostatic plasticity. These results indicate a potential therapeutic path of promoting natural resilience for depression treatment.


Biological Psychiatry | 2008

AKT Signaling within the Ventral Tegmental Area Regulates Cellular and Behavioral Responses to Stressful Stimuli

Vaishnav Krishnan; Ming-Hu Han; Michelle S. Mazei-Robison; Sergio D. Iñiguez; Jessica L. Ables; Vincent Vialou; Olivier Berton; Subroto Ghose; Herbert E. Covington; Matthew D Wiley; Ross P. Henderson; Rachael L. Neve; Amelia J. Eisch; Carol A. Tamminga; Scott J. Russo; Carlos A. Bolaños; Eric J. Nestler

BACKGROUND The neurobiological mechanisms by which only a minority of stress-exposed individuals develop psychiatric diseases remain largely unknown. Recent evidence suggests that dopaminergic neurons of the ventral tegmental area (VTA) play a key role in the manifestation of stress vulnerability. METHODS Using a social defeat paradigm, we segregated susceptible mice (socially avoidant) from unsusceptible mice (socially interactive) and examined VTA punches for changes in neurotrophic signaling. Employing a series of viral vectors, we sought to causally implicate these neurotrophic changes in the development of avoidance behavior. RESULTS Susceptibility to social defeat was associated with a significant reduction in levels of active/phosphorylated AKT (thymoma viral proto-oncogene) within the VTA, whereas chronic antidepressant treatment (in mice and humans) increased active AKT levels. This defeat-induced reduction in AKT activation in susceptible mice was both necessary and sufficient to recapitulate depressive behaviors associated with susceptibility. Pharmacologic reductions in AKT activity also significantly raised the firing frequency of VTA dopamine neurons, an important electrophysiologic hallmark of the susceptible phenotype. CONCLUSIONS These studies highlight a crucial role for decreases in VTA AKT signaling as a key mediator of the maladaptive cellular and behavioral response to chronic stress.

Collaboration


Dive into the Ming-Hu Han's collaboration.

Top Co-Authors

Avatar

Eric J. Nestler

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Allyson K. Friedman

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Rachael L. Neve

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dipesh Chaudhury

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Barbara Juarez

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Scott J. Russo

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jessica J. Walsh

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Stacy M. Ku

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Hongxing Zhang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ja Wook Koo

Allen Institute for Brain Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge