Ming-Jaw Don
Chinese Culture University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ming-Jaw Don.
Free Radical Biology and Medicine | 1998
Yat-Pang Chau; Shine-Gwo Shiah; Ming-Jaw Don; Min-Liang Kuo
Beta-Lapachone a novel topoisomerase inhibitor, has been found to induce apoptosis in various human cancer cells. In this study we report that a dramatic elevation of hydrogen peroxide (H2O2) in human leukemia HL-60 cells following 1 microM beta-lapachone treatment and that this increase was effectively inhibited by treatment with antioxidant N-acetyl-L-cysteine (NAC), ascorbic acid, alpha-tocopherol. NAC strongly prevented beta-lapachone-induced apoptotic characteristics such as DNA fragmentation and apoptotic morphology. However, treatment of HL-60 cells with another topoisomerase inhibitor camptothecin (CPT) did not induce H2O2 production as compared to untreated cells. NAC also failed to block CPT-induced apoptosis. Correlated with these findings, we found that cancer cell lines K562, MCF-7, and SW620, contained high level of intracellular glutathione (GSH), were not elevated in H2O2 and were resistant to apoptosis after treatment with beta-lapachone. In contrast, cancer cell lines such as, HL-60, U937, and Molt-4 which have lower level of GSH, were readily increased of H2O2 and were sensitive to this drug. Furthermore, ectopic overexpression of Bcl-2 in HL-60 cells also attenuated beta-lapachone-induced H2O2 and conferred resistance to beta-lapachone-induced cell death. Beta-Lapachone at the concentration as low as 0.25 microM effectively induced HL-60 cells to undergo monocytic differentiation, as evidenced by CD14 antigenicity and alpha-naphthyl acetate esterase activity. Again, the beta-lapachone-induced monocytic differentiation was suppressed by NAC. These results suggest that intracellular H2O2 generation plays a crucial role in beta-lapachone-induced cell death and differentiation.
Bioorganic & Medicinal Chemistry Letters | 2003
Ming-Jaw Don; David F.V. Lewis; Shu-Yun Wang; Mei-Wen Tsai; Yune-Fang Ueng
Derivatives of a CYP1A2 inhibitor rutaecarpine were synthesized to have potent and selective inhibition of human CYP1 members. Structural modelling shows a good fitting of rutaecarpine with the putative active site of human CYP1A2. Among the derivatives, 10- and 11-methoxyrutaecarpine are the most selective CYP1B1 inhibitors. 1-Methoxyrutaecarpine and 1,2-dimethoxyrutaecarpine are the most selective CYP1A2 inhibitors.
Journal of Cellular Physiology | 2007
Hsiu-Ni Kung; Chung-Liang Chien; Gar-Yang Chau; Ming-Jaw Don; Kuo-Shyan Lu; Yat-Pang Chau
Neovascularization is an essential process in tumor development, it is conceivable that anti‐angiogenic treatment may block tumor growth. In angiogenesis, nitric oxide (NO) is an important factor which mediates vascular endothelial cell growth and migration. β‐Lapachone (3,4‐dihydro‐2,2‐dimethyl‐2H‐naphtho‐[1,2‐b]pyran‐5,6‐dione), a natural product extracted from the lapacho tree (Tabebuia avellanedae), has been demonstrated to possess anti‐cancer and anti‐viral effects. Whether β‐lapachone can induce endothelial cell death or has an anti‐angiogenic effect is still an enigma. We investigated the in vitro effect of β‐lapachone on endothelial cells, including human vascular endothelial cell line, EAhy926, and human umbilical vascular endothelial cells (HUVEC). Our results revealed that (1) the intracellular cGMP levels and the mitochondria membrane potential (MMP) decreased, and calpain and caspases were activated, during β‐lapachone‐induced endothelial cell death; (2) co‐treatment with calpain inhibitors (ALLM or ALLN) or the intracellular calcium chelator, BAPTA, but not the general caspase inhibitor, zVAD‐fmk, provided significant protection against apoptosis by preventing the β‐lapachone‐induced MMP decrease and cytoplasmic calcium increase; (3) addition of NO downregulated the β‐lapachone‐induced cGMP depletion and protected the cells from apoptosis by blocking the MMP decrease and the calcium increase; and (4) exogenous NO protects endothelial cells against the cell death induced by β‐lapachone, but not the anti‐angiogenic effect. From all the data above, we demonstrated that NO can attenuate the apoptotic effect of β‐lapachone on human endothelial cells and suggest that β‐lapachone may have potential as an anti‐angiogenic drug. J. Cell. Physiol. 211: 522–532, 2007.
Drug Metabolism and Disposition | 2006
Yune-Fang Ueng; Ming-Jaw Don; Woan-Ching Jan; Shu-Yun Wang; Li-Kang Ho; Chieh-Fu Chen
Rutaecarpine is the main active alkaloid of the herbal medicine, Evodia rutaecarpa. To identify the major human cytochrome P450 (P450) participating in rutaecarpine oxidative metabolism, human liver microsomes and bacteria-expressed recombinant human P450 were studied. In liver microsomes, rutaecarpine was oxidized to 10-, 11-, 12-, and 3-hydroxyrutaecarpine. Microsomal 10- and 3-hydroxylation activities were strongly inhibited by ketoconazole. The 11- and 12-hydroxylation activities were inhibited by α-naphthoflavone, quinidine, and ketoconazole. These results indicated that multiple hepatic P450s including CYP1A2, CYP2D6, and CYP3A4 participate in rutaecarpine hydroxylations. Among recombinant P450s, CYP1A1 had the highest rutaecarpine hydroxylation activity. Decreased metabolite formation at high substrate concentration indicated that there was substrate inhibition of CYP1A1- and CYP1A2-catalyzed hydroxylations. CYP1A1-catalyzed rutaecarpine hydroxylations had Vmax values of 1388 to ∼1893 pmol/min/nmol P450, Km values of 4.1 to ∼9.5 μM, and Ki values of 45 to ∼103 μM. These results indicated that more than one molecule of rutaecarpine is accessible to the CYP1A active site. The major metabolite 10-hydroxyrutaecarpine decreased CYP1A1, CYP1A2, and CYP1B1 activities with respective IC50 values of 2.56 ± 0.04, 2.57 ± 0.11, and 0.09 ± 0.01 μM, suggesting that product inhibition might occur during rutaecarpine hydroxylation. The metabolite profile and kinetic properties of rutaecarpine hydroxylation by human P450s provide important information relevant to the clinical application of rutaecarpine and E. rutaecarpa.
Cancer Letters | 2005
Ya-Ting Lee; Ming-Jaw Don; Pei-Shih Hung; Yuh-Chiang Shen; Yin-Shen Lo; Kuo-Wei Chang; Chieh-Fu Chen; Li-Kang Ho
Molecular Pharmacology | 2001
Ming-Jaw Don; Yen-Hwa Chang; Kuang-Kuo Chen; Li-Kang Ho; Yat-Pang Chau
Journal of Biomedical Science | 2005
Li-Jyun Yang; Chung-Jiuan Jeng; Hsiu-Ni Kung; Cheng-Chi Chang; An-Guor Wang; Gar-Yang Chau; Ming-Jaw Don; Yat-Pang Chau
Bioorganic & Medicinal Chemistry Letters | 2007
Chang-Ming Sun; Lee-Gin Lin; Hsi-Jung Yu; Chih-Yu Cheng; Ya-Chuan Tsai; Chi-Wei Chu; Yi-Hui Din; Yat-Pang Chau; Ming-Jaw Don
中醫藥雜誌 | 2003
Chien-Chang Shen; Yuh-Chi Kuo; Ray-Ling Huang; Lei-Chwen Lin; Ming-Jaw Don; Tun-Tschu Chang; Cheng-Jen Chou
Chemical Research in Toxicology | 2004
Yune-Fang Ueng; Chih-Hang Hsieh; Ming-Jaw Don; Chin-Wen Chi; Li-Kang Ho