Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ming-Lin Liu is active.

Publication


Featured researches published by Ming-Lin Liu.


Atherosclerosis | 1999

Intense physical training decreases circulating antioxidants and endothelium-dependent vasodilatation in vivo

Robert Bergholm; Sari Mäkimattila; Miia Valkonen; Ming-Lin Liu; Sanni Lahdenperä; Marja-Riitta Taskinen; Anssi Sovijärvi; Pekka Malmberg; Hannele Yki-Järvinen

Physical training increases free radical production and consumes antioxidants. It has previously been shown that acute exercise markedly increases the susceptibility of LDL to oxidation but whether such changes are observed during physical training is unknown. We measured circulating antioxidants, lipids and lipoproteins, and blood flow responses to intrabrachial infusions of endothelium-dependent (acetylcholine, ACh, L-N-monomethyl-arginine, L-NMMA) and -independent (sodium nitroprusside, SNP) vasoactive agents, before and after 3 months of running in 9 fit male subjects. Maximal aerobic power increased from 53 +/- 1 to 58 +/- 2 ml/kg min (P < 0.02). All circulating antioxidants (uric acid, SH-groups, alpha-tocopherol, beta-carotene, retinol) except ascorbate decreased significantly during training. Endothelium-dependent vasodilatation in forearm vessels decreased by 32-35% (P < 0.05), as determined from blood flow responses to both a low (10.8 +/- 2.1 vs. 7.3 +/- 1.5 ml/dl min, 0 vs. 3 months) and a high (14.8 +/- 2.6 vs. 9.6 +/- 1.8) ACh dose. The % endothelium-dependent blood flow (% decrease in basal flow by L-NMMA), decreased through training from 37 +/- 3 to 22 +/- 7% (P < 0.05). Blood flow responses to SNP remained unchanged. The decrease in uric acid was significantly correlated with the change in the % decrease in blood flow by L-NMMA (r = 0.74, P < 0.05). The lag time for the susceptibility of plasma LDL to oxidation in vitro, LDL size and the concentration of LDL cholestetol remained unchanged. We conclude that relatively intense aerobic training decreases circulating antioxidant concentrations and impairs endothelial function in forearm vessels.


American Journal of Physiology-endocrinology and Metabolism | 1999

A marathon run increases the susceptibility of LDL to oxidation in vitro and modifies plasma antioxidants

Ming-Lin Liu; Robert Bergholm; Sari Mäkimattila; Sanni Lahdenperä; Miia Valkonen; Hannele Hilden; Hannele Yki-Järvinen; Marja-Riitta Taskinen

Physical activity increases the production of oxygen free radicals, which may consume antioxidants and oxidize low-density lipoprotein (LDL). To determine whether this occurs during strenuous aerobic exercise, we studied 11 well-trained runners who participated in the Helsinki City Marathon. Blood samples were collected before, immediately after, and 4 days after the race to determine its effect on circulating antioxidants and LDL oxidizability in vitro. LDL oxidizability was increased as determined from a reduction in the lag time for formation of conjugated dienes both immediately after (180 +/- 7 vs. 152 +/- 4 min, P < 0.001) and 4 days after (155 +/- 7 min, P < 0.001) the race. No significant changes in lipid-soluble antioxidants in LDL or in the peak LDL particle size were observed after the race. Total peroxyl radical trapping antioxidant capacity of plasma (TRAP) and uric acid concentrations were increased after the race, but, except for TRAP, these changes disappeared within 4 days. Plasma thiol concentrations were reduced after the race. No significant changes were observed in plasma ascorbic acid, alpha-tocopherol, beta-carotene, and retinol concentrations after the marathon race. We conclude that strenuous aerobic exercise increases the susceptibility of LDL to oxidation in vitro for up to 4 days. Although the increase in the concentration of plasma TRAP reflects an increase of plasma antioxidant capacity, it seems insufficient to prevent the increased susceptibility of LDL to oxidation in vitro, which was still observed 4 days after the race.Physical activity increases the production of oxygen free radicals, which may consume antioxidants and oxidize low-density lipoprotein (LDL). To determine whether this occurs during strenuous aerobic exercise, we studied 11 well-trained runners who participated in the Helsinki City Marathon. Blood samples were collected before, immediately after, and 4 days after the race to determine its effect on circulating antioxidants and LDL oxidizability in vitro. LDL oxidizability was increased as determined from a reduction in the lag time for formation of conjugated dienes both immediately after (180 ± 7 vs. 152 ± 4 min, P < 0.001) and 4 days after (155 ± 7 min, P < 0.001) the race. No significant changes in lipid-soluble antioxidants in LDL or in the peak LDL particle size were observed after the race. Total peroxyl radical trapping antioxidant capacity of plasma (TRAP) and uric acid concentrations were increased after the race, but, except for TRAP, these changes disappeared within 4 days. Plasma thiol concentrations were reduced after the race. No significant changes were observed in plasma ascorbic acid, α-tocopherol, β-carotene, and retinol concentrations after the marathon race. We conclude that strenuous aerobic exercise increases the susceptibility of LDL to oxidation in vitro for up to 4 days. Although the increase in the concentration of plasma TRAP reflects an increase of plasma antioxidant capacity, it seems insufficient to prevent the increased susceptibility of LDL to oxidation in vitro, which was still observed 4 days after the race.


Bioinformatics | 2015

EVpedia: a community web portal for extracellular vesicles research

Dae-Kyum Kim; Jaewook Lee; Sae Rom Kim; Dong Sic Choi; Yae Jin Yoon; Ji Hyun Kim; Gyeongyun Go; Dinh Nhung; Kahye Hong; Su Chul Jang; Si-Hyun Kim; Kyong-Su Park; Oh Youn Kim; Hyun Taek Park; Jihye Seo; Elena Aikawa; Monika Baj-Krzyworzeka; Bas W. M. van Balkom; Mattias Belting; Lionel Blanc; Vincent C. Bond; Antonella Bongiovanni; Francesc E. Borràs; Luc Buée; Edit I. Buzás; Lesley Cheng; Aled Clayton; Emanuele Cocucci; Charles S. Dela Cruz; Dominic M. Desiderio

MOTIVATION Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS We present an improved version of EVpedia, a public database for EVs research. This community web portal contains a database of publications and vesicular components, identification of orthologous vesicular components, bioinformatic tools and a personalized function. EVpedia includes 6879 publications, 172 080 vesicular components from 263 high-throughput datasets, and has been accessed more than 65 000 times from more than 750 cities. In addition, about 350 members from 73 international research groups have participated in developing EVpedia. This free web-based database might serve as a useful resource to stimulate the emerging field of EV research. AVAILABILITY AND IMPLEMENTATION The web site was implemented in PHP, Java, MySQL and Apache, and is freely available at http://evpedia.info.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2004

Circulating Oxidized Low-Density Lipoprotein and Its Association With Carotid Intima-Media Thickness in Asymptomatic Members of Familial Combined Hyperlipidemia Families

Ming-Lin Liu; Kati Ylitalo; Riitta Salonen; Jukka T. Salonen; Marja-Riitta Taskinen

Objective—Oxidized low-density lipoprotein (Ox-LDL)is implicated in the pathogenesis of atherosclerosis. Circulating oxidation-specific epitopes on plasma Ox-LDL has been linked with coronary artery disease, but its determinants and its association with early development of atherosclerosis in familial combined hyperlipidemia (FCHL) has not been very well studied. This study aimed to investigate the determinants of the circulating Ox-LDL and the association between Ox-LDL and carotid intima-media thickness (IMT) in asymptomatic members of FCHL families. Methods and Results—Ox-LDL, susceptibility of LDL to oxidation in vitro, plasma 8-isoprostane and antioxidants, lipids and lipoproteins, LDL particle size, and carotid IMT were measured in 150 asymptomatic FCHL family members. Affected FCHL family members had reduced LDL particle size and lag time for LDL oxidation, increased plasma levels of Ox-LDL, increased plasma urate and &agr;-tocopherol, and a trend for the increase of 8-isoprostane as compared with nonaffected FCHL. Ox-LDL was independently associated with serum LDL cholesterol, apoB, and 8-isoprostane in multivariate analysis but only univariately correlated with LDL particle size and lag time for LDL oxidation. In addition, Ox-LDL was significantly associated with carotid mean IMT independently of other clinical and biochemical variables in a multivariate model. Conclusion—Serum LDL cholesterol, apoB levels, and 8-isoprostane were the most important determinants of Ox-LDL. Ox-LDL is independently associated with carotid IMT in asymptomatic FCHL family members and can be used as a marker of early atherosclerosis in FCHL.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2010

Tobacco Smoke Induces the Generation of Procoagulant Microvesicles From Human Monocytes/Macrophages

Mingzhen Li; Demin Yu; Kevin Jon Williams; Ming-Lin Liu

Objective—To investigate whether exposure of human monocytes/macrophages to tobacco smoke induces their release of membrane microvesicles (MVs) that carry tissue factor (TF) released from cells, whether smoke-induced MVs are procoagulant, and what cellular processes might be responsible for their production. Methods and Results—We found that exposure of human THP-1 monocytes and primary human monocyte–derived macrophages to 3.75% tobacco smoke extract (TSE) significantly increased their total and TF-positive MV generation. More importantly, MVs released from TSE-treated human monocytes/macrophages exhibited 3 to 4 times the procoagulant activity of control MVs, as assessed by TF-dependent generation of factor Xa. Exposure to TSE increased TF mRNA and protein expression and cell surface TF display by both THP-1 monocytes and primary human monocyte–derived macrophages. In addition, TSE exposure caused activation of C-Jun-N-terminal kinase (JNK), p38, extracellular signal regulated kinase (ERK) mitogen-activated protein kinases (MAPK), and apoptosis (a major mechanism for MV generation). Treatment of THP-1 cells with inhibitors of ERK, MAP kinase kinase (MEK), Ras, or caspase 3, but not p38 or JNK, significantly blunted TSE-induced apoptosis and MV generation. Surprisingly, neither ERK nor caspase 3 inhibition altered the induction of cell surface TF display by TSE, indicating an effect solely on MV release. Inhibition of ERK or caspase 3 essentially abolished TSE-induced generation of procoagulant MVs from THP-1 monocytes. Conclusion—Tobacco smoke exposure of human monocytes/macrophages induces cell surface TF display, apoptosis, and ERK- and caspase 3–dependent generation of biologically active procoagulant MVs. These processes may be novel contributors to the pathological hypercoagulability of active and secondhand smokers.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2006

Cholesterol Enrichment of Human Monocyte/Macrophages Induces Surface Exposure of Phosphatidylserine and the Release of Biologically-Active Tissue Factor–Positive Microvesicles

Ming-Lin Liu; Michael P. Reilly; Peter Casasanto; Steven E. McKenzie; Kevin Jon Williams

Objective—Biologically significant amounts of two procoagulant molecules, phosphatidylserine (PS) and tissue factor (TF), are transported by monocyte/macrophage-derived microvesicles (MVs). Because cellular cholesterol accumulation is an important feature of atherosclerotic vascular disease, we now examined effects of cholesterol enrichment on MV release from human monocytes and macrophages. Methods and Results—Cholesterol enrichment of human THP-1 monocytes, alone or in combination with lipopolysaccharide (LPS), tripled their total MV generation, as quantified by flow cytometry based on particle size and PS exposure. The subset of these MVs that were also TF-positive was likewise increased by cellular cholesterol enrichment, and these TF-positive MVs exhibited a striking 10-fold increase in procoagulant activity. Moreover, cholesterol enrichment of primary human monocyte-derived macrophages also increased their total as well as TF-positive MV release, and these TF-positive MVs exhibited a similar 10-fold increase in procoagulant activity. To explore the mechanisms of enhanced MV release, we found that cholesterol enrichment of monocytes caused PS exposure on the cell surface by as early as 2 hours and genomic DNA fragmentation in a minority of cells by 20 hours. Addition of a caspase inhibitor at the beginning of these incubations blunted both cholesterol-induced apoptosis and MV release. Conclusions—Cholesterol enrichment of human monocyte/macrophages induces the generation of highly biologically active, PS-positive MVs, at least in part through induction of apoptosis. Cholesterol-induced monocyte/macrophage MVs, both TF-positive and TF-negative, may be novel contributors to atherothrombosis.


Stroke | 2002

Association Between Carotid Intima-Media Thickness and Low-Density Lipoprotein Size and Susceptibility of Low-Density Lipoprotein to Oxidation in Asymptomatic Members of Familial Combined Hyperlipidemia Families

Ming-Lin Liu; Kati Ylitalo; Ilpo Nuotio; Riitta Salonen; Jukka T. Salonen; Marja-Riitta Taskinen

Background and Purpose— In addition to low-density lipoprotein (LDL) cholesterol, small, dense LDL particles and oxidative modification of LDL have been linked to the pathogenesis of atherosclerosis. The present study was aimed at investigating the association between carotid artery intima-media thickness (IMT) and LDL particle size and susceptibility of LDL to oxidation in vitro in asymptomatic members of familial combined hyperlipidemia (FCHL) families. Methods— LDL particle size, susceptibility of LDL to oxidation in vitro, and carotid IMT were measured in 148 asymptomatic FCHL family members. Results— LDL particle size and lag time for LDL oxidation were reduced in hyperlipidemic compared with normolipidemic family members. LDL particle size, serum total cholesterol, and &agr;-tocopherol in LDL were independently associated with lag time for LDL oxidation in multivariate analysis. LDL particle size was associated with carotid mean IMT independently of clinical, lipid, and antioxidant variables in multivariate analysis. Although the susceptibility of LDL to oxidation in vitro was correlated with mean IMT, it did not have a significant independent contribution to variation in mean IMT in the multivariate model. Conclusions— We conclude that LDL particle size but not susceptibility of LDL to oxidation in vitro is independently associated with carotid IMT in asymptomatic FCHL family members. These results imply that small, dense LDL as an inherent feature of FCHL is an important diagnostic indicator for coronary artery disease risk in FCHL.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Cholesterol-Induced Membrane Microvesicles As Novel Carriers of Damage–Associated Molecular Patterns Mechanisms of Formation, Action, and Detoxification

Ming-Lin Liu; Rosario Scalia; Jawahar L. Mehta; Kevin Jon Williams

Objective—Cholesterol enrichment occurs in vivo when phagocytes ingest retained and aggregated lipoproteins, damaged or senescent cells, and related debris. We previously reported that enrichment of human monocyte/macrophages with unesterified cholesterol (UC) triggers the release of highly procoagulant microvesicles ([MVs], also called microparticles) through induction of apoptosis. We determined whether UC-induced MVs (UCMVs) might transmit endogenous danger signals and, if so, what molecular processes might be responsible for their production, recognition, and detoxification. Methods and Results—Injection of UCMVs into rats provoked extensive leukocyte rolling and adherence to postcapillary venules in vivo. Likewise, exposure of mouse aortic explants or cultured human endothelial cells to UCMVs augmented the adhesion of human monocytes by several fold and increased endothelial cell intercellular adhesion molecule-1 via nuclear factor-&kgr;B activation. To explore molecular mechanisms, we found that UC enrichment of human monocytes, in the absence of other stimuli, induced mitochondrial complex II–dependent accumulation of superoxide and peroxides. A subset of these moieties was exported on UCMVs and mediated endothelial activation. Strikingly, aortic explants from mice lacking lectin–like oxidized low–density lipoprotein receptor-1, a pattern-recognition receptor, were essentially unable to respond to UCMVs, whereas simultaneously treated explants from wild-type mice responded robustly by increasing monocyte recruitment. Moreover, high-density lipoprotein and its associated enzyme paraoxonase-1 exerted unexpected roles in the detoxification of UCMVs. Conclusion—Overall, our study implicates MVs from cholesterol–loaded human cells as novel carriers of danger signals. By promoting maladaptive immunologic and thrombotic responses, these particles may contribute to atherothrombosis and other conditions in vivo.


Hepatology | 2010

Type 2 diabetes in mice induces hepatic overexpression of sulfatase 2, a novel factor that suppresses uptake of remnant lipoproteins

Keyang Chen; Ming-Lin Liu; Lana Schaffer; Mingzhen Li; Guenther Boden; Xiangdong Wu; Kevin Jon Williams

Type 2 diabetes mellitus (T2DM) impairs hepatic clearance of atherogenic postprandial remnant lipoproteins. Our work and that of others have identified syndecan‐1 heparan sulfate proteoglycans (HSPGs) as remnant lipoprotein receptors. Nevertheless, defects in the T2DM liver have not been molecularly characterized, and neither has the correction that occurs upon caloric restriction. We used microarrays to compare expression of proteoglycan‐related genes in livers from control db/m mice; obese, T2DM db/db littermates fed ad libitum (AL); and db/db mice pair‐fed to match the intake of db/m mice. Surprisingly, the arrays identified only one gene whose dysregulation by T2DM would disrupt HSPG structure: the heparan sulfate glucosamine‐6‐O‐endosulfatase‐2 (Sulf2). SULF2 degrades HSPGs by removing 6‐O sulfate groups, but had no previously known role in diabetes or lipoprotein biology. Follow‐up quantitative polymerase chain reaction assays revealed a striking 11‐fold induction of Sulf2 messenger RNA in the livers of AL T2DM mice compared with controls. Immunoblots demonstrated induction of SULF2 in AL livers, with restoration toward normal in livers from pair‐fed db/db mice. Knockdown of SULF2 in cultured hepatocytes doubled HSPG‐mediated catabolism of model remnant lipoproteins. Notably, co‐immunoprecipitations revealed a persistent physical association of SULF2 with syndecan‐1. To identify mechanisms of SULF2 dysregulation in T2DM, we found that advanced glycosylation end products provoked a 10‐fold induction in SULF2 expression by cultured hepatocytes and an approximately 50% impairment in their catabolism of remnants and very low‐density lipoprotein, an effect that was entirely reversed by SULF2 knockdown. Adiponectin and insulin each suppressed SULF2 protein in cultured liver cells and in murine livers in vivo, consistent with a role in energy flux. Likewise, both hormones enhanced remnant lipoprotein catabolism in vitro. Conclusion: SULF2 is an unexpected suppressor of atherogenic lipoprotein clearance by hepatocytes and an attractive target for inhibition. (HEPATOLOGY 2010;.)


Current Opinion in Endocrinology, Diabetes and Obesity | 2012

Microvesicles: potential markers and mediators of endothelial dysfunction.

Ming-Lin Liu; Kevin Jon Williams

Purpose of reviewMicrovesicles (also known as microparticles) are small membranous structures that are released from platelets and cells upon activation or during apoptosis. Microvesicles have been found in blood, urine, synovial fluid, extracellular spaces of solid organs, atherosclerotic plaques, tumors, and elsewhere. Here, we focus on new clinical and basic work that implicates microvesicles as markers and mediators of endothelial dysfunction and hence novel contributors to cardiovascular and other diseases. Recent findingsAdvances in the detection of microvesicles and the use of cell type-specific markers to determine their origin have allowed studies that associated plasma concentrations of specific microvesicles with major types of endothelial dysfunction – namely, inappropriate or maladaptive vascular tone, leukocyte recruitment, and thrombosis. Recent investigations have highlighted microvesicular transport of key biologically active molecules besides tissue factor, such as ligands for pattern-recognition receptors, elements of the inflammasome, and morphogens. Microvesicles generated from human cells under different pathologic circumstances, for example, during cholesterol loading or exposure to endotoxin, carry different subsets of these molecules and thereby alter endothelial function through several distinct, well characterized molecular pathways. SummaryClinical and basic studies indicate that microvesicles may be novel markers and mediators of endothelial dysfunction. This work has advanced our understanding of the development of cardiovascular and other diseases. Opportunities and obstacles to clinical applications are discussed.

Collaboration


Dive into the Ming-Lin Liu's collaboration.

Top Co-Authors

Avatar

Kevin Jon Williams

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Liu Yx

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Demin Yu

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge