Ming Pei
West Virginia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ming Pei.
The FASEB Journal | 2002
Ming Pei; Luis A. Solchaga; Joachim Seidel; Li Zeng; Gordana Vunjak-Novakovic; Arnold I. Caplan; Lisa E. Freed
We hypothesized that the mechanically active environment present in rotating bioreactors mediates the effectiveness of three‐dimensional (3D) scaffolds for cartilage tissue engineering. Cartilaginous constructs were engineered by using bovine calf chondrocytes in conjunction with two scaffold materials (SM) (benzylated hyaluronan and polyglycolic acid); three scaffold structures (SS) (sponge, non‐woven mesh, and composite woven/non‐woven mesh); and two culture systems (CS) (a bioreactor system and petri dishes). Construct size, composition [cells, glycosaminoglycans (GAG), total collagen, and type‐specific collagen mRNA expression and protein levels], and mechanical function (compressive modulus) were assessed, and individual and interactive effects of model system parameters (SM, SS, CS, SM∗CS and SS∗CS) were demonstrated. The CS affected cell seeding (higher yields of more spatially uniform cells were obtained in bioreactor‐grown than dish‐grown 3‐day constructs) and subsequently affected chondrogenesis (higher cell numbers, wet weights, wet weight GAG fractions, and collagen type II levels were obtained in bioreactor‐grown than dish‐grown 1‐month constructs). In bioreactors, mesh‐based scaffolds yielded 1‐month constructs with lower type I collagen levels and four‐fold higher compressive moduli than corresponding sponge‐based scaffolds. The data imply that interactions between bioreactors and 3D tissue engineering scaffolds can be utilized to improve the structure, function, and molecular properties of in vitro‐generated cartilage.
Biochemical and Biophysical Research Communications | 2002
Ming Pei; Joachim Seidel; Gordana Vunjak-Novakovic; Lisa E. Freed
A model system for the in vitro generation of cartilaginous constructs was used to study a tissue engineering paradigm whereby sequentially applied growth factors promoted chondrocytes to first de-differentiate into a proliferative state and then re-differentiate and undergo chondrogenesis. Early cultivation in medium with supplemental TGF-beta1/FGF-2 doubled cell fractions in 2-week constructs compared to unsupplemented controls. Subsequent culture with supplemental IGF-I yielded large 4-week constructs with high fractions of cartilaginous extracellular matrix (ECM) and high compressive moduli, whereas prolonged culture with supplemental FGF-2 yielded small 4-week constructs with low ECM fractions and moduli. Sequential supplementation with TGF-beta1/FGF-2 and then IGF-I yielded 4-week constructs with type-specific mRNA expression and protein levels that were high for type II and negligible for type I collagen, in contrast to other growth factor regimens studied. The data demonstrate that structural, functional, and molecular properties of engineered cartilage can be modulated by sequential application of growth factors.
Differentiation | 2008
Ming Pei; Fan He; Gordana Vunjak-Novakovic
Synovium is considered a candidate source of cells for cartilage tissue engineering. Compared with mesenchymal stem cells (MSCs) from other sources, synovium-derived stem cells (SDSCs) have a higher capacity for chondrogenic differentiation. Our objective was to define cocktails of growth factors that support the growth and chondrogenic differentiation of SDSCs in chemically defined medium. We established a fast and highly selective technique of negative isolation of SDSC populations. The individual and combined effects of three growth factors-transforming growth factor-beta1 (TGF-beta1), insulin-like growth factor I (IGF-I), and basic fibroblast growth factor (FGF-2)-were evaluated in serum-free pellet cultures of SDSCs for the chondrogenesis of SDSCs using histology, biochemical analysis, and real-time RT-PCR. In vitro studies identified TGF-beta1 as the key factor for both the growth and chondrogenesis of SDSCs. The highest rates of SDSC growth were observed with the synergistic interaction of all three factors. With respect to chondrogenic differentiation of SDSCs, the interaction of TGF-beta1 and IGF-I applied simultaneously was superior to the sequential application of these two factors or any other combination of growth factors studied. Based on these findings, we propose a two-step protocol for the derivation of chondrogenic SDSCs: a cocktail of TGF-beta1, IGF-I, and FGF-2 is applied first to induce cell growth followed by a cocktail of TGF-beta1 and IGF-I applied to induce chondrogenesis.
Osteoarthritis and Cartilage | 2009
Ming Pei; Fan He; Brandon M. Boyce; Vincent Kish
OBJECTIVE Synovium-derived stem cells (SDSCs) have proven to be superior in cartilage regeneration compared with other sources of mesenchymal stem cells. We hypothesized that conventionally passaged SDSCs can be engineered in vitro into cartilage tissue constructs and the engineered premature tissue can be implanted to repair allogeneic full-thickness femoral condyle cartilage defects without immune rejection. METHODS Synovial tissue was harvested from rabbit knee joints. Passage 3 SDSCs were mixed with fibrin glue and seeded into non-woven polyglycolic acid (PGA) mesh. After 1-month incubation with growth factor cocktails, the premature tissue was implanted into rabbit knees to repair osteochondral defects with Collagraft as a bone substitute in the Construct group. Fibrin glue-saturated PGA/Collagraft composites were used as a Scaffold group. The defect was left untreated as an Empty group. RESULTS SDSCs were engineered in rotating bioreactor systems into premature cartilage, which displayed the expression of sulfated glycosaminoglycan (GAG), collagen II, collagen I, and macrophages. Six months after implantation with premature tissue, cartilage defects were full of smooth hyaline-like cartilage with no detectable collagen I and macrophages but a high expression of collagen II and GAG, which were also integrated with the surrounding native cartilage. The Scaffold and Empty groups were resurfaced with fibrous-like and fibrocartilage tissue, respectively. CONCLUSION Allogeneic SDSC-based premature tissue constructs are a promising stem cell-based approach for cartilage defects. Although in vitro data suggest that contaminated macrophages affected the quality of SDSC-based premature cartilage, effects of macrophages on in vivo tissue regeneration and integration necessitate further investigation.
Osteoarthritis and Cartilage | 2012
Fangyuan Wei; Jingming Zhou; Xiaochun Wei; Juntao Zhang; Braden C. Fleming; Richard M. Terek; Ming Pei; Qian Chen; Tao Liu; Lei Wei
OBJECTIVE The objectives of this study were to (1) determine the correlation between osteoarthritis (OA) and Indian hedgehog (Ihh) expression, and (2) establish the effects of Ihh on expression of markers of chondrocyte hypertrophy and matrix metalloprotease (MMP)-13 in human OA cartilage. DESIGN OA cartilage and synovial fluid samples were obtained during total knee arthroplasty. Normal cartilage samples were obtained from intra-articular tumor resections, and normal synovial fluid samples were obtained from healthy volunteers and the contralateral uninjured knee of patients undergoing anterior cruciate ligament reconstruction. OA was graded using the Mankin score. Expression of Ihh in synovial fluid was determined by Western blot. Ihh, type X collagen and MMP-13 mRNA were determined by real time PCR. Protein expression of type X collagen and MMP-13 in cartilage samples was analyzed with immunohistochemistry. Chondrocyte size was measured using image analysis. RESULTS Ihh expression was increased 2.6 fold in OA cartilage and 37% in OA synovial fluid when compared to normal control samples. Increased expression of Ihh was associated with the severity of OA and expression of markers of chondrocyte hypertrophy: type X collagen and MMP-13, and chondocyte size. Chondrocytes were more spherical with increasing severity of OA. There was a significant correlation between Mankin score and cell size (r(2) = 0.80) and Ihh intensity (r(2) = 0.89). Exogenous Ihh induced a 6.8 fold increase of type X collagen and 2.8 fold increase of MMP-13 mRNA expression in cultured chondrocytes. Conversely, knockdown of Ihh by siRNA and Hh inhibitor cyclopamine had the opposite effect. CONCLUSIONS Ihh expression correlates with OA progression and changes in chondrocyte morphology and gene expression consistent with chondrocyte hypertrophy and cartilage degradation seen in OA cartilage. Thus, Ihh may be a potential therapeutic target to prevent OA progression.
Differentiation | 2009
Ming Pei; Demeng Chen; Jingting Li; Lei Wei
The transforming growth factor-beta (TGF-beta) superfamily members play diverse roles in cartilage development and maintenance. TGF-beta up-regulates chondrogenic gene expression by enhancing transcription factor SRY (sex determining region Y)-box 9 (Sox9) and inhibits osteoblast differentiation by repressing runt-related transcription factor 2 (Runx2). Recently, histone deacetylases (HDACs) were reported to act as negative regulators of chondrocyte hypertrophy. It was speculated that HDAC4 may promote TGF-beta1-induced MSC chondrogenesis. In this study, the adenovirus-mediated HDAC4 gene (Ad.HDAC4) was utilized to infect synovium-derived stem cells (SDSCs). Adenovirus-mediated LacZ (Ad.LacZ) served as a control. The infected cells were centrifuged to form SDSC pellets followed by incubation in a serum-free chondrogenic medium for 15 days with or without 10ng/mL TGF-beta1. Transfection efficiency was determined in SDSCs using Ad.LacZ. Cytotoxicity was measured using lactate dehydrogenase assay. Histology, immunostaining, biochemical analysis, and real-time polymerase chain reaction were performed to assess chondrogenesis at protein and mRNA levels in infected SDSCs. Our data demonstrated that supplementation with TGF-beta1 could initiate and promote SDSC chondrogenesis; however, TGF-beta1 alone was insufficient to fully differentiate SDSCs into chondrocytes. Ad.HDAC4 could be efficiently transfected into SDSCs. Without TGF-beta1 treatment, HDAC4 had no effect on SDSC chondrogenesis; however, in the presence of TGF-beta1, HDAC4 could speed up and maintain a high level of chondrogenesis while down-regulating the hypertrophic marker - type X collagen expression. This study is the first report showing that HDAC4 overexpression promotes TGF-beta1-induced SDSC chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy. The mechanism underlying this process needs further investigation.
Biomaterials | 2014
Jingting Li; Kirk C. Hansen; Ying Zhang; Chenbo Dong; Cerasela Z. Dinu; Monika Dzieciatkowska; Ming Pei
Autologous cells suffer from limited cell number and senescence during ex vivo expansion for cartilage repair. Here we found that expansion on extracellular matrix (ECM) deposited by fetal synovium-derived stem cells (SDSCs) (FE) was superior to ECM deposited by adult SDSCs (AE) in promoting cell proliferation and chondrogenic potential. Unique proteins in FE might be responsible for the rejuvenation effect of FE while advantageous proteins in AE might contribute to differentiation more than to proliferation. Compared to AE, the lower elasticity of FE yielded expanded adult SDSCs with lower elasticity which could be responsible for the enhancement of chondrogenic and adipogenic differentiation. MAPK and noncanonical Wnt signals were actively involved in ECM-mediated adult SDSC rejuvenation.
Stem Cell Reviews and Reports | 2014
Wei Seong Toh; Casper Bindzus Foldager; Ming Pei; James H. Hui
Significant research efforts have been undertaken in the last decade in the development of stem cell-based therapies for cartilage repair. Among the various stem cell sources, mesenchymal stem cells (MSCs) demonstrate great promise and clinical efficacy in cartilage regeneration. With a deeper understanding of stem cell biology, new therapeutics and new bioengineering approaches have emerged and showed potential for further developments. Of note, there has been a paradigm shift in applying MSCs for tissue regeneration from the use of stem cells for transplantation to the use of stem cell-derived matrix and secretome components as therapeutic tools and agents for cartilage regeneration. In this review, we will discuss the emerging role of MSCs in cartilage regeneration and the most recent advances in development of stem cell-based therapeutics for cartilage regeneration.
Journal of Pineal Research | 2015
Long Zhou; Xi Chen; Tao Liu; Yihong Gong; Sijin Chen; Guoqing Pan; Wenguo Cui; Zong-Ping Luo; Ming Pei; Huilin Yang; Fan He
Mesenchymal stem cells (MSCs) represent an attractive source for stem cell‐based regenerative therapy, but they are vulnerable to oxidative stress‐induced premature senescence in pathological conditions. We previously reported antioxidant and antiarthritic effects of melatonin on MSCs against proinflammatory cytokines. In this study, we hypothesized that melatonin could protect MSCs from premature senescence induced by hydrogen peroxide (H2O2) via the silent information regulator type 1 (SIRT1)‐dependent pathway. In response to H2O2 at a sublethal concentration of 200 μm, human bone marrow‐derived MSCs (BM‐MSCs) underwent growth arrest and cellular senescence. Treatment with melatonin before H2O2 exposure cannot significantly prevent premature senescence; however, treatment with melatonin subsequent to H2O2 exposure successfully reversed the senescent phenotypes of BM‐MSCs in a dose‐dependent manner. This result was made evident by improved cell proliferation, decreased senescence‐associated β‐galactosidase activity, and the improved entry of proliferating cells into the S phase. In addition, treatment with 100 μm melatonin restored the osteogenic differentiation potential of BM‐MSCs that was inhibited by H2O2‐induced premature senescence. We also found that melatonin attenuated the H2O2‐stimulated phosphorylation of p38 mitogen‐activated protein kinase, decreased expression of the senescence‐associated protein p16INK4α, and increased SIRT1. Further molecular experiments revealed that luzindole, a nonselective antagonist of melatonin receptors, blocked melatonin‐mediated antisenescence effects. Inhibition of SIRT1 by sirtinol counteracted the protective effects of melatonin, suggesting that melatonin reversed the senescence in cells through the SIRT1‐dependent pathway. Together, these findings lay new ground for understanding oxidative stress‐induced premature senescence and open perspectives for therapeutic applications of melatonin in stem cell‐based regenerative medicine.
Developmental Biology | 2010
Lei Wei; Katsuaki Kanbe; Mark Lee; Xiaochun Wei; Ming Pei; Xiaojuan Sun; Richard M. Terek; Qian Chen
During endochondral bone formation, chondrocytes undergo differentiation toward hypertrophy before they are replaced by bone and bone marrow. In this study, we found that a G-protein coupled receptor CXCR4 is predominantly expressed in hypertrophic chondrocytes, while its ligand, chemokine stromal cell-derived factor 1 (SDF-1) is expressed in the bone marrow adjacent to hypertrophic chondrocytes. Thus, they are expressed in a complementary pattern in the chondro-osseous junction of the growth plate. Transfection of a CXCR4 cDNA into pre-hypertrophic chondrocytes results in a dose-dependent increase of hypertrophic markers including Runx2, Col X, and MMP-13 in response to SDF-1 treatment. In organ culture SDF-1 infiltrates cartilage and accelerates growth plate hypertrophy. Furthermore, a continuous infusion of SDF-1 into the rabbit proximal tibial physis results in early physeal closure, which is accompanied by a transient elevation of type X collagen expression. Blocking SDF-1/CXCR4 interaction suppresses the expression of Runx2. Thus, interaction of SDF-1 and CXCR4 is required for Runx2 expression. Interestingly, knocking down Runx2 gene expression results in a decrease of CXCR4 mRNA levels in hypertrophic chondrocytes. This suggests a positive feedback loop of stimulation of chondrocyte hypertrophy by SDF-1/CXCR4, which is mediated by Runx2.