Ming-Shi Li
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ming-Shi Li.
PLOS ONE | 2012
Kathleen Sim; Michael J. Cox; Harm Wopereis; Rocío Martín; Jan Knol; Ming-Shi Li; William Cookson; Miriam F. Moffatt; J. Simon Kroll
The 16S rRNA gene is conserved across all bacteria and as such is routinely targeted in PCR surveys of bacterial diversity. PCR primer design aims to amplify as many different 16S rRNA gene sequences from as wide a range of organisms as possible, though there are no suitable 100% conserved regions of the gene, leading to bias. In the gastrointestinal tract, bifidobacteria are a key genus, but are often under-represented in 16S rRNA surveys of diversity. We have designed modified, ‘bifidobacteria-optimised’ universal primers, which we have demonstrated detection of bifidobacterial sequence present in DNA mixtures at 2% abundance, the lowest proportion tested. Optimisation did not compromise the detection of other organisms in infant faecal samples. Separate validation using fluorescence in situ hybridisation (FISH) shows that the proportions of bifidobacteria detected in faecal samples were in agreement with those obtained using 16S rRNA based pyrosequencing. For future studies looking at faecal microbiota, careful selection of primers will be key in order to ensure effective detection of bifidobacteria.
PLOS ONE | 2009
Laia Ribas; Ming-Shi Li; Benjamin J. Doddington; Jacques Robert; Judith Anna Seidel; J. Simon Kroll; Lyle B. Zimmerman; Nicholas C. Grassly; Trenton W. J. Garner; Matthew C. Fisher
Amphibians are experiencing a panzootic of unprecedented proportions caused by the emergence of Batrachochytrium dendrobatidis (Bd). However, all species are not equally at risk of infection, and risk is further modified by environmental variables, specifically temperature. In order to understand how, and when, hosts mount a response to Bd we analysed infection dynamics and patterns of gene expression in the model amphibian species Silurana (Xenopus) tropicalis. Mathematical modelling of infection dynamics demonstrate the existence of a temperature-dependent protective response that is largely independent of the intrinsic growth-rate of Bd. Using temporal expression-profiling by microarrays and qRT-PCR, we characterise this response in the main amphibian lymphoid tissue, the spleen. We demonstrate that clearance of Bd at the host-optimal temperature is not clearly associated with an adaptive immune response, but rather is correlated with the induction of components of host innate immunity including the expression of genes that are associated with the production of the antimicrobial skin peptide preprocareulein (PPCP) as well as inflammatory responses. We find that adaptive immunity appears to be lacking at host-optimal temperatures. This suggests that either Bd does not stimulate, or suppresses, adaptive immunity, or that trade-offs exist between innate and adaptive limbs of the amphibian immune system. At cold temperatures, S. tropicalis loses the ability to mount a PPCP-based innate response, and instead manifests a more pronounced inflammatory reaction that is characterised by the production of proteases and higher pathogen burdens. This study demonstrates the temperature-dependency of the amphibian response to infection by Bd and indicates the influence that changing climates may exert on the ectothermic host response to pathogens.
Clinical Infectious Diseases | 2015
Kathleen Sim; Alexander G. Shaw; Paul Randell; Michael J. Cox; Zoë E. McClure; Ming-Shi Li; Munther Haddad; Paul R. Langford; William Cookson; Miriam F. Moffatt; J. Simon Kroll
Using 16S rRNA gene sequencing and targeted culture, we compared microbiota in fecal samples from infants with necrotizing enterocolitis (NEC) and controls. Two significant signatures were associated with NEC: 1 with dominant Clostridium perfringens and 1 with dominant Enterobacteriaceae.
Infection and Immunity | 2009
Amanda J. Beddek; Ming-Shi Li; J. Simon Kroll; T. William Jordan; Diana R. Martin
ABSTRACT Changing antigenic structure such as with capsule polysaccharide is a common strategy for bacterial pathogens to evade a host immune system. The recent emergence of an invasive W:2a:P1.7-2,4 sequence type 11 (ST-11) strain of Neisseria meningitidis in New Zealand, an uncommon serogroup/serotype in New Zealand disease cases, was investigated for its genetic origins. Molecular typing of 107 meningococcal isolates with similar serotyping characteristics was undertaken to determine genetic relationships. Results indicated that the W:2a:P1.7-2,4 strain had emerged via capsule switching from a group C strain (C:2a:P1.7-2,4). Neither the upstream nor downstream sites of recombination could be elucidated, but sequence analysis demonstrated that at least 45 kb of DNA was involved in the recombination, including the entire capsule gene cluster. The oatWY gene carried by the W:2a:P1.7-2,4 strain contained the insertion sequence element IS1301, one of five variants of oatWY found in group W135 strains belonging to the carriage-associated ST-22 clonal complex. This suggested that the origin of the capsule genes carried by the invasive W:2a:P1.7-2,4 strain is carriage associated. These results provide novel evidence for the long-standing dogma that disease-associated strains acquire antigenic structure from carriage-associated strains. Moreover, the capsule switch described here has arisen from the exchange of the entire capsule locus.
PLOS ONE | 2012
Asa K. Hedman; Ming-Shi Li; Paul R. Langford; J. Simon Kroll
Neisseria meningitidis is a nasopharyngeal commensal of humans which occasionally invades the blood to cause septicaemia. The transcriptome of N. meningitidis strain MC58 grown in human blood for up to 4 hours was determined and around 10% of the genome was found to be differentially regulated. The nuo, pet and atp operons, involved in energy metabolism, were up-regulated, while many house-keeping genes were down-regulated. Genes encoding protein chaperones and proteases, involved in the stress response; complement resistant genes encoding enzymes for LOS sialylation and biosynthesis; and fHbp (NMB1870) and nspA (NMB0663), encoding vaccine candidates, were all up-regulated. Genes for glutamate uptake and metabolism, and biosynthesis of purine and pyrimidine were also up-regulated. Blood grown meningococci are under stress and undergo a metabolic adaptation and energy conservation strategy. The localisation of four putative outer membrane proteins encoded by genes found to be up-regulated in blood was assessed by FACS using polyclonal mouse antisera, and one (NMB0390) showed evidence of surface expression, supporting its vaccine candidacy.
Molecular Microbiology | 2003
Ming-Shi Li; Jayne L. Farrant; Paul R. Langford; J. Simon Kroll
Brazilian purpuric fever (BPF) is a fulminant septicaemic infection of young children, caused by a clonal group of strains of Haemophilus influenzae biogroup aegyptius (Hae), an organism previously solely associated with conjunctivitis. Their special capacity to invade from the initial site of conjunctival infection is unexplained. A polymerase chain reaction (PCR)‐amplified subtractive hybridization technique was used to identify genes specific to the BPF clonal group. A copy of bacteriophage HP1 and 46 further chromosomal loci were identified in the BPF but not in the conjunctivitis strain of Hae. Sixteen were characterized further, and one – encoding an analogue of the Legionella pneumophila epithelial cell entry‐enhancing protein EnhC – was investigated in depth. Two genes, bpf001 and bpf002, unique to the BPF clonal group were identified between homologues of HI1276 and HI1277 in a complex locus close to H. influenzae genetic island 1, recently identified in pathogenic H. influenzae type b. Bpf001 encodes a protein homologous to EnhC and to the previously uncharacterized product of the meningococcal gene NMB0419. Functional studies of bpf001 proving intractable, NMB0419 was chosen as a surrogate for investigation and shown to modulate bacterial interaction with monolayers of human respiratory epithelial cells, promoting invasion, the first stage (for Hae) in the pathogenesis of BPF.
PLOS ONE | 2015
Alexander G. Shaw; Kathleen Sim; Paul Randell; Michael J. Cox; Zoë E. McClure; Ming-Shi Li; Hugo Donaldson; Paul R. Langford; William Cookson; Miriam F. Moffatt; J. Simon Kroll
Background Late-onset bloodstream infection (LO-BSI) is a common complication of prematurity, and lack of timely diagnosis and treatment can have life-threatening consequences. We sought to identify clinical characteristics and microbial signatures in the gastrointestinal microbiota preceding diagnosis of LO-BSI in premature infants. Method Daily faecal samples and clinical data were collected over two years from 369 premature neonates (<32 weeks gestation). We analysed samples from 22 neonates who developed LO-BSI and 44 matched control infants. Next-generation sequencing of 16S rRNA gene regions amplified by PCR from total faecal DNA was used to characterise the microbiota of faecal samples preceding diagnosis from infants with LO-BSI and controls. Culture of selected samples was undertaken, and bacterial isolates identified using MALDI-TOF. Antibiograms from bloodstream and faecal isolates were compared to explore strain similarity. Results From the week prior to diagnosis, infants with LO-BSI had higher proportions of faecal aerobes/facultative anaerobes compared to controls. Risk factors for LO-BSI were identified by multivariate analysis. Enterobacteriaceal sepsis was associated with antecedent multiple lines, low birth weight and a faecal microbiota with prominent Enterobacteriaceae. Staphylococcal sepsis was associated with Staphylococcus OTU faecal over-abundance, and the number of days prior to diagnosis of mechanical ventilation and of the presence of centrally-placed lines. In 12 cases, the antibiogram of the bloodstream isolate matched that of a component of the faecal microbiota in the sample collected closest to diagnosis. Conclusions The gastrointestinal tract is an important reservoir for LO-BSI organisms, pathogens translocating across the epithelial barrier. LO-BSI is associated with an aberrant microbiota, with abundant staphylococci and Enterobacteriaceae and a failure to mature towards predominance of obligate anaerobes.
Infection and Immunity | 2013
Ariann Hey; Ming-Shi Li; Michael Hudson; Paul R. Langford; J. Simon Kroll
ABSTRACT Neisseria meningitidis is a commensal of humans that can colonize the nasopharyngeal epithelium for weeks to months and occasionally invades to cause life-threatening septicemia and meningitis. Comparatively little is known about meningococcal gene expression during colonization beyond those first few hours. In this study, the transcriptome of adherent serogroup B N. meningitidis strain MC58 was determined at intervals during prolonged cocultivation with confluent monolayers of the human respiratory epithelial cell line 16HBE14. At different time points up to 21 days, 7 to 14% of the meningococcal genome was found to be differentially regulated. The transcriptome of adherent meningococci obtained after 4 h of coculture was markedly different from that obtained after prolonged cocultivation (24 h, 96 h, and 21 days). Genes persistently upregulated during prolonged cocultivation included three genes (hfq, misR/phoP, and lrp) encoding global regulatory proteins. Many genes encoding known adhesins involved in epithelial adherence were upregulated, including those of a novel locus (spanning NMB0342 to NMB0348 [NMB0342-NMB0348]) encoding epithelial cell-adhesive function. Sixteen genes (including porA, porB, rmpM, and fbpA) encoding proteins previously identified by their immunoreactivity to sera from individuals colonized long term with serogroup B meningococci were also upregulated during prolonged cocultivation, indicating that our system models growth conditions in vivo during the commensal state. Surface-expressed proteins downregulated in the nasopharynx (and thus less subject to selection pressure) but upregulated in the bloodstream (and thus vulnerable to antibody-mediated bactericidal activity) should be interesting candidate vaccine antigens, and in this study, three new proteins fulfilling these criteria have been identified: NMB0497, NMB0866, and NMB1882.
Medical Microbiology and Immunology | 2009
Ming-Shi Li; Noel Y. S. Chow; Sunita Sinha; Denise Halliwell; Michelle Finney; Andrew Gorringe; M. Watson; J. Simon Kroll; Paul R. Langford; Steven A R Webb
We sought to determine whether NMB1966, encoding a putative ABC transporter, has a role in pathogenesis. Compared to its isogenic wild-type parent strain Neisseria meningitidis MC58, the NMB1966 knockout mutant was less adhesive and invasive for human bronchial epithelial cells, had reduced survival in human blood and was attenuated in a systemic mouse model of infection. The transcriptome of the wild-type and the NMB1966 mutant was compared. The data are consistent with a previous functional assignment of NMB1966 being the ABC transporter component of a glutamate transporter operon. Forty-seven percent of all the differentially regulated genes encoded known outer membrane proteins or pathways generating complex surface structures such as adhesins, peptidoglycan and capsule. The data show that NMB1966 has a role in virulence and that remodelling of the outer membrane and surface/structures is associated with attenuation of the NMB1966 mutant.
PeerJ | 2017
Graham Rose; Alexander G. Shaw; Kathleen Sim; David Wooldridge; Ming-Shi Li; Saheer E. Gharbia; Raju Misra; John Simon Kroll
Background Few studies have investigated the gut microbiome of infants, fewer still preterm infants. In this study we sought to quantify and interrogate the resistome within a cohort of premature infants using shotgun metagenomic sequencing. We describe the gut microbiomes from preterm but healthy infants, characterising the taxonomic diversity identified and frequency of antibiotic resistance genes detected. Results Dominant clinically important species identified within the microbiomes included C. perfringens, K. pneumoniae and members of the Staphylococci and Enterobacter genera. Screening at the gene level we identified an average of 13 antimicrobial resistance genes per preterm infant, ranging across eight different antibiotic classes, including aminoglycosides and fluoroquinolones. Some antibiotic resistance genes were associated with clinically relevant bacteria, including the identification of mecA and high levels of Staphylococci within some infants. We were able to demonstrate that in a third of the infants the S. aureus identified was unrelated using MLST or metagenome assembly, but low abundance prevented such analysis within the remaining samples. Conclusions We found that the healthy preterm infant gut microbiomes in this study harboured a significant diversity of antibiotic resistance genes. This broad picture of resistances and the wider taxonomic diversity identified raises further caution to the use of antibiotics without consideration of the resident microbial communities.