Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ming-Tain Lai is active.

Publication


Featured researches published by Ming-Tain Lai.


Journal of Pharmacology and Experimental Therapeutics | 2009

First Demonstration of Cerebrospinal Fluid and Plasma Aβ Lowering with Oral Administration of a β-Site Amyloid Precursor Protein-Cleaving Enzyme 1 Inhibitor in Nonhuman Primates

Sethu Sankaranarayanan; Marie A. Holahan; Dennis Colussi; Ming-Chih Crouthamel; Viswanath Devanarayan; Joan D. Ellis; Amy S. Espeseth; Adam T. Gates; Samuel Graham; Allison R. Gregro; Daria J. Hazuda; Jerome H. Hochman; Katharine M Holloway; Lixia Jin; Jason A. Kahana; Ming-Tain Lai; Janet Lineberger; Georgia B. McGaughey; Keith P. Moore; Philippe G. Nantermet; Beth Pietrak; Eric A. Price; Hemaka A. Rajapakse; Shaun R. Stauffer; Melissa A. Steinbeiser; Guy R. Seabrook; Harold G. Selnick; Xiao-Ping Shi; Matthew G. Stanton; John Swestock

β-Site amyloid precursor protein (APP)-cleaving enzyme (BACE) 1 cleavage of amyloid precursor protein is an essential step in the generation of the potentially neurotoxic and amyloidogenic Aβ42 peptides in Alzheimers disease. Although previous mouse studies have shown brain Aβ lowering after BACE1 inhibition, extension of such studies to nonhuman primates or man was precluded by poor potency, brain penetration, and pharmacokinetics of available inhibitors. In this study, a novel tertiary carbinamine BACE1 inhibitor, tertiary carbinamine (TC)-1, was assessed in a unique cisterna magna ported rhesus monkey model, where the temporal dynamics of Aβ in cerebrospinal fluid (CSF) and plasma could be evaluated. TC-1, a potent inhibitor (IC50 ∼ 0.4 nM), has excellent passive membrane permeability, low susceptibility to P-glycoprotein transport, and lowered brain Aβ levels in a mouse model. Intravenous infusion of TC-1 led to a significant but transient lowering of CSF and plasma Aβ levels in conscious rhesus monkeys because it underwent CYP3A4-mediated metabolism. Oral codosing of TC-1 with ritonavir, a potent CYP3A4 inhibitor, twice daily over 3.5 days in rhesus monkeys led to sustained plasma TC-1 exposure and a significant and sustained reduction in CSF sAPPβ, Aβ40, Aβ42, and plasma Aβ40 levels. CSF Aβ42 lowering showed an EC50 of ∼20 nM with respect to the CSF [TC-1] levels, demonstrating excellent concordance with its potency in a cell-based assay. These results demonstrate the first in vivo proof of concept of CSF Aβ lowering after oral administration of a BACE1 inhibitor in a nonhuman primate.


Journal of Medicinal Chemistry | 2008

Discovery of 3-{5-[(6-amino-1H-pyrazolo[3,4-b]pyridine-3-yl)methoxy]-2-chlorophenoxy}-5-chlorobenzonitrile (MK-4965): a potent, orally bioavailable HIV-1 non-nucleoside reverse transcriptase inhibitor with improved potency against key mutant viruses.

Thomas J. Tucker; John T. Sisko; Robert M. Tynebor; Theresa M. Williams; Peter J. Felock; Jessica A. Flynn; Ming-Tain Lai; Yuexia Liang; Georgia B. McGaughey; Meiquing Liu; Mike Miller; Gregory Moyer; Vandna Munshi; Rebecca Perlow-Poehnelt; Sridhar Prasad; John Reid; Rosa Sanchez; Maricel Torrent; Joseph P. Vacca; Bang-Lin Wan; Youwei Yan

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have been shown to be a key component of highly active antiretroviral therapy (HAART). The use of NNRTIs has become part of standard combination antiviral therapies producing clinical outcomes with efficacy comparable to other antiviral regimens. There is, however, a critical issue with the emergence of clinical resistance, and a need has arisen for novel NNRTIs with a broad spectrum of activity against key HIV-1 RT mutations. Using a combination of traditional medicinal chemistry/SAR analyses, crystallography, and molecular modeling, we have designed and synthesized a series of novel, highly potent NNRTIs that possess broad spectrum antiviral activity and good pharmacokinetic profiles. Further refinement of key compounds in this series to optimize physical properties and pharmacokinetics has resulted in the identification of 8e (MK-4965), which has high levels of potency against wild-type and key mutant viruses, excellent oral bioavailability and overall pharmacokinetics, and a clean ancillary profile.


Bioorganic & Medicinal Chemistry Letters | 2008

The design and synthesis of diaryl ether second generation HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) with enhanced potency versus key clinical mutations.

Thomas J. Tucker; Sandeep Saggar; John T. Sisko; Robert M. Tynebor; Theresa M. Williams; Peter J. Felock; Jessica A. Flynn; Ming-Tain Lai; Yuexia Liang; Georgia B. McGaughey; Meiquing Liu; Mike Miller; Gregory Moyer; Vandna Munshi; Rebecca Perlow-Poehnelt; Sridhar Prasad; Rosa Sanchez; Maricel Torrent; Joseph P. Vacca; Bang-Lin Wan; Youwei Yan

Using a combination of traditional Medicinal Chemistry/SAR analysis, crystallography, and molecular modeling, we have designed and synthesized a series of novel, highly potent NNRTIs that possess broad antiviral activity against a number of key clinical mutations.


Antimicrobial Agents and Chemotherapy | 2010

Distinct Mutation Pathways of Non-Subtype B HIV-1 during In Vitro Resistance Selection with Nonnucleoside Reverse Transcriptase Inhibitors

Ming-Tain Lai; Meiqing Lu; Peter J. Felock; Renee Hrin; Ying-Jie Wang; Youwei Yan; Sanjeev Munshi; Georgia B Mcgaughey; Robert M. Tynebor; Thomas J. Tucker; Theresa M. Williams; Jay A. Grobler; Daria J. Hazuda; Philip M. McKenna; Michael D. Miller

ABSTRACT Studies were conducted to investigate mutation pathways among subtypes A, B, and C of human immunodeficiency virus type 1 (HIV-1) during resistance selection with nonnucleoside reverse transcriptase inhibitors (NNRTIs) in cell culture under low-multiplicity of infection (MOI) conditions. The results showed that distinct pathways were selected by different virus subtypes under increasing selective pressure of NNRTIs. F227C and Y181C were the major mutations selected by MK-4965 in subtype A and C viruses during resistance selection. With efavirenz (EFV), F227C and V106M were the major mutations responsible for viral breakthrough in subtype A viruses, whereas a single pathway (G190A/V106M) accounted for mutation development in subtype C viruses. Y181C was the dominant mutation in the resistance selection with etravirine (ETV) in subtype A, and E138K/H221Y were the mutations detected in the breakthrough viruses from subtype C viruses with ETV. In subtype B viruses, on the other hand, known NNRTI-associated mutations (e.g., Y181C, P236L, L100I, V179D, and K103N) were selected by the NNRTIs. The susceptibility of the subtype A and B mutant viruses to NNRTIs was determined in order to gain insight into the potential mechanisms of mutation development. Collectively, these results suggest that minor differences may exist in conformation of the residues within the NNRTI binding pocket (NNRTIBP) of reverse transcriptase (RT) among the three subtypes of viruses. Thus, the interactions between NNRTIs and the residues in the NNRTIBPs of different subtypes may not be identical, leading to distinct mutation pathways during resistance selection in cell culture.


Antimicrobial Agents and Chemotherapy | 2014

In Vitro Characterization of MK-1439, a Novel HIV-1 Nonnucleoside Reverse Transcriptase Inhibitor

Ming-Tain Lai; Meizhen Feng; Jean-Pierre Falgueyret; Paul Tawa; Marc Witmer; Daniel J. DiStefano; Yuan Li; Jason Burch; Nancy Sachs; Meiqing Lu; Elizabeth Cauchon; Louis-Charles Campeau; Jay A. Grobler; Youwei Yan; Yves Ducharme; Bernard Cote; Ernest Asante-Appiah; Daria J. Hazuda; Michael D. Miller

ABSTRACT Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are a mainstay of therapy for treating human immunodeficiency type 1 virus (HIV-1)-infected patients. MK-1439 is a novel NNRTI with a 50% inhibitory concentration (IC50) of 12, 9.7, and 9.7 nM against the wild type (WT) and K103N and Y181C reverse transcriptase (RT) mutants, respectively, in a biochemical assay. Selectivity and cytotoxicity studies confirmed that MK-1439 is a highly specific NNRTI with minimum off-target activities. In the presence of 50% normal human serum (NHS), MK-1439 showed excellent potency in suppressing the replication of WT virus, with a 95% effective concentration (EC95) of 20 nM, as well as K103N, Y181C, and K103N/Y181C mutant viruses with EC95 of 43, 27, and 55 nM, respectively. MK-1439 exhibited similar antiviral activities against 10 different HIV-1 subtype viruses (a total of 93 viruses). In addition, the susceptibility of a broader array of clinical NNRTI-associated mutant viruses (a total of 96 viruses) to MK-1439 and other benchmark NNRTIs was investigated. The results showed that the mutant profile of MK-1439 was superior overall to that of efavirenz (EFV) and comparable to that of etravirine (ETR) and rilpivirine (RPV). Furthermore, E138K, Y181C, and K101E mutant viruses that are associated with ETR and RPV were susceptible to MK-1439 with a fold change (FC) of <3. A two-drug in vitro combination study indicated that MK-1439 acts nonantagonistically in the antiviral activity with each of 18 FDA-licensed drugs for HIV infection. Taken together, these in vitro data suggest that MK-1439 possesses the desired properties for further development as a new antiviral agent.


Antimicrobial Agents and Chemotherapy | 2009

Antiviral Activity of MK-4965, a Novel Nonnucleoside Reverse Transcriptase Inhibitor

Ming-Tain Lai; Vandna Munshi; Sinoeun Touch; Robert M. Tynebor; Thomas J. Tucker; Philip M. McKenna; Theresa M. Williams; Daniel DiStefano; Daria J. Hazuda; Michael D. Miller

ABSTRACT Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are the mainstays of therapy for the treatment of human immunodeficiency virus type 1 (HIV-1) infections. However, the effectiveness of NNRTIs can be hampered by the development of resistance mutations which confer cross-resistance to drugs in the same class. Extensive efforts have been made to identify new NNRTIs that can suppress the replication of the prevalent NNRTI-resistant viruses. MK-4965 is a novel NNRTI that possesses both diaryl ether and indazole moieties. The compound displays potency at subnanomolar concentrations against wild-type (WT), K103N, and Y181C reverse transcriptase (RT) in biochemical assays. MK-4965 is also highly potent against the WT virus and two most prevalent NNRTI-resistant viruses (viruses that harbor the K103N or the Y181C mutation), against which it had 95% effective concentrations (EC95s) of <30 nM in the presence of 10% fetal bovine serum. The antiviral EC95 of MK-4965 was reduced approximately four- to sixfold when it was tested in 50% human serum. Moreover, MK-4965 was evaluated with a panel of 15 viruses with NNRTI resistance-associated mutations and showed a superior mutant profile to that of efavirenz but not to that of etravirine. MK-4965 was similarly effective against various HIV-1 subtypes and viruses containing nucleoside reverse transcriptase inhibitor or protease inhibitor resistance-conferring mutations. A two-drug combination study showed that the antiviral activity of MK-4965 was nonantagonistic with each of the 18 FDA-licensed drugs tested vice versa in the present study. Taken together, these in vitro data show that MK-4965 possesses the desired properties for further development as a new NNRTI for the treatment of HIV-1 infection.


Journal of Neurochemistry | 2006

A presenilin-independent aspartyl protease prefers the γ-42 site cleavage

Ming-Tain Lai; Ming-Chih Crouthamel; Jillian M. DiMuzio; Beth Pietrak; Dorit B. Donoviel; Alan Bernstein; Stephen J. Gardell; Yue-Ming Li; Daria J. Hazuda

β‐Amyloid peptides (Aβ40 and Aβ42) are the major constituents of amyloid plaques, which are one of the hallmarks of Alzheimers disease (AD). The Aβ is derived from sequential cleavages of amyloid precursor protein (APP) by β‐ and γ‐secretases. γ‐Secretase consists of at least four proteins where presenilins (PS1 and PS2 or PS) are the catalytic subunit involved in the γ‐site cleavage of APP. Secretion of both Aβ40 and Aβ42 is significantly reduced in PS1 knock‐out cells and completely abolished in cells deficient for both PS1 and PS2. Consequently, both the PS proteins play essential roles in the production of the secretory of Aβ from cells. Recent studies in primary neurons, however, suggest that PSs are not required for intracellular Aβ42 accumulation; thus the intracellular Aβ42 appears to be generated in a PS‐independent manner. Here we present the first biochemical evidence indicating that Aβ, especially Aβ42, can be generated in the absence of PS based on an in vitroγ‐secretase assay employing membranes prepared from PS‐deficient Blastocyst‐derived (BD) cells. This PS‐independent γ‐secretase (PSIG) activity is sensitive to the changes in pH and displays an optimal activity at pH 6.0. Pepstatin A is a potent inhibitor for this proteolytic activity with IC50 of 1.2 nm and 0.4 nm for Aβ40 and Aβ42 generation, respectively. These results indicate that these PS‐independent γ‐site cleavages are mediated by an aspartyl protease. More importantly, the PSIG activity displays a distinct preference in mediating the 42‐site cleavage over the 40‐site cleavage, thereby generating Aβ42 as the predominant product.


Neurobiology of Aging | 2002

γ-Secretase: characterization and implication for Alzheimer disease therapy

Min Xu; Ming-Tain Lai; Qian Huang; Jillian DiMuzio-Mower; José L. Castro; Timothy Harrison; Alan Nadin; Joseph George Neduvelil; Mark S. Shearman; Jules A. Shafer; Stephen J. Gardell; Yue-Ming Li

gamma-Secretase is a membrane-bound protease that cleaves within the transmembrane region of amyloid precursor protein to generate the C-termini of the Abeta peptides which are believed to play a central role in the neuropathology of Alzheimers disease. An in vitro gamma-secretase assay using a recombinant substrate C100Flag has been developed to facilitate the characterization and identification of this enigmatic protease. Biochemical studies establish that gamma-secretase activity is catalyzed by a PS1-containing macromolecular complex. Moreover, the fact that the photoreactive active gamma-secretase inhibitor directed to the active site labels PS1 suggests that PS1 contains the active site of the protease. Presenilin/gamma-secretase as a potential target for AD therapy and its role in regulated intramembrane proteolysis are discussed.


Journal of Medicinal Chemistry | 2009

Biaryl Ethers as Novel Non-nucleoside Reverse Transcriptase Inhibitors with Improved Potency against Key Mutant Viruses

Dai-Shi Su; John J. Lim; Elizabeth Tinney; Bang-Lin Wan; Mary Beth Young; Kenneth D. Anderson; Deanne Rudd; Vandna Munshi; Carolyn Bahnck; Peter J. Felock; Meiquing Lu; Ming-Tain Lai; Sinoeun Touch; Gregory Moyer; Daniel DiStefano; Jessica A. Flynn; Yuexia Liang; Rosa Sanchez; Rebecca Perlow-Poehnelt; Mike Miller; Joe P. Vacca; Theresa M. Williams; Neville J. Anthony

Biaryl ethers were recently reported as potent NNRTIs. Herein we disclose a detailed SAR study that led to the biaryl ether 6. This compound possessed excellent potency against WT RT and key clinically observed RT mutants and had an excellent pharmacokinetic profile in rats, dogs, and rhesus macaques. The compound also exhibited a clean safety profile in preclinical safety studies.


Antimicrobial Agents and Chemotherapy | 2015

In Vitro Resistance Selection with Doravirine (MK-1439), a Novel Nonnucleoside Reverse Transcriptase Inhibitor with Distinct Mutation Development Pathways

Meizhen Feng; Deping Wang; Jay A. Grobler; Daria J. Hazuda; Michael D. Miller; Ming-Tain Lai

ABSTRACT Doravirine (DOR, formerly known as MK-1439) is a human immunodeficiency type 1 virus (HIV-1) nonnucleoside reverse transcriptase inhibitor (NNRTI) that is currently in phase 2b clinical trials. In vitro resistance selection of subtype B virus (MT4-green fluorescent protein [GFP] cells), as well as subtype A and C viruses (MT4-GFP/CCR5 cells) was conducted with DOR, rilpivirine (RPV), and efavirine (EFV) under low-multiplicity-of-infection conditions in a 96-well format. Resistance selection was performed with escalating concentrations of the NNRTIs ranging from the 95% effective concentration (1× EC95) to 1,000× EC95 in the presence of 10% fetal bovine serum. In the resistance selection of subtype B virus with DOR, a V106A mutant virus led to two mutation pathways, followed by the emergence separately of either F227L or L234I. In the resistance selection of subtype A and C viruses, similar mutation development pathways were detected, in which a V106A or V106M mutant was also the starting virus in the pathways. Mutations that are commonly associated with RPV and EFV in clinical settings were also identified in subtype B viruses such as the E138K and K103N mutants, respectively, in this in vitro resistance selection study. The susceptibility of subtype B mutant viruses selected by DOR, RPV, and EFV to NNRTIs was evaluated. Results suggest that mutant viruses selected by DOR are susceptible to RPV and EFV and mutants selected by RPV and EFV are susceptible to DOR. When the replication capacity of the V106A mutant was compared with that of the wild-type (WT) virus, the mutant virus was 4-fold less fit than the WT virus.

Collaboration


Dive into the Ming-Tain Lai's collaboration.

Top Co-Authors

Avatar

Ming-Chih Crouthamel

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiao-Ping Shi

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Beth Pietrak

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Adam J. Simon

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Vandna Munshi

United States Military Academy

View shared research outputs
Researchain Logo
Decentralizing Knowledge