Ming-Yi Xu
Shanghai Jiao Tong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ming-Yi Xu.
Biochimica et Biophysica Acta | 2014
Ming-Yi Xu; Jun-Jie Hu; Jie Shen; Mei-Ling Wang; Qing-Qing Zhang; Ying Qu; Lungen Lu
BACKGROUND/AIMS The role of signal transducer and activator of transcription 3 (Stat3) in liver fibrosis is still controversial. Since hepatic stellate cells (HSCs) and transforming growth factor-β1 (TGF-β1) are central to the fibrogenesis, our goal was to clarify the mechanism of Stat3 crosslinking of TGF-β1 signaling. METHODS Stat3, TGF-β1 mRNA and protein expressions were examined in liver tissues of chronic hepatitis B (CHB) patients and diethylinitrosamine (DEN)-induced rat fibrosis model. The effect of Stat3 activation or suppression on TGF-β1 signaling in HSCs was tested in vitro and in vivo. RESULTS Stat3 expression as well as TGF-β1 was increased in CHB patients and DEN-induced fibrosis rat model. This was strongly correlated with increase in fibrosis staging. TGF-β1, a mediator of fibrosis, was enhanced by Stat3, but suppressed by siRNA-mediated RNA knockdown of Stat3 (siStat3) or Janus kinase 2 inhibitor (AG490) both in vivo and in vitro. Stat3 crosslinking TGF-β1 signaling plays an important role in HSC activation and increasing fibrosis related products. TGF-β1 could not achieve profibrogenic cytokine and anti-apoptosis characteristics without Stat3 activation in HSCs. CONCLUSION We provide a novel role of Stat3 cooperating TGF-β1 in activation and anti-apoptotic effect of HSCs. Stat3 worsens liver fibrosis through the up-regulation of TGF-β1 and fibrotic product expression.
Journal of Cellular and Molecular Medicine | 2017
Ying Qu; Qidi Zhang; Xiaobo Cai; Fei Li; Zhenzeng Ma; Ming-Yi Xu; Lungen Lu
Proliferating hepatic stellate cells (HSCs) respond to liver damage by secreting collagens that form fibrous scar tissue, which can lead to cirrhosis if in appropriately regulated. Advancement of microRNA (miRNA) hepatic therapies has been hampered by difficulties in delivering miRNA to damaged tissue. However, exosomes secreted by adipose‐derived mesenchymal stem cells (ADSCs) can be exploited to deliver miRNAs to HSCs. ADSCs were engineered to overexpress miRNA‐181‐5p (miR‐181‐5p‐ADSCs) to selectively home exosomes to mouse hepatic stellate (HST‐T6) cells or a CCl4‐induced liver fibrosis murine model and compared with non‐targeting control Caenorhabditis elegans miR‐67 (cel‐miR‐67)‐ADSCs. In vitro analysis confirmed that the transfer of miR‐181‐5p from miR‐181‐5p‐ADSCs occurred via secreted exosomal uptake. Exosomes were visualized in HST‐T6 cells using cyc3‐labelled pre‐miRNA‐transfected ADSCs with/without the exosomal inhibitor, GW4869. The effects of miRNA‐181‐5p overexpression on the fibrosis associated STAT3/Bcl‐2/Beclin 1 pathway and components of the extracellular matrix were assessed. Exosomes from miR181‐5p‐ADSCs down‐regulated Stat3 and Bcl‐2 and activated autophagy in the HST‐T6 cells. Furthermore, the up‐regulated expression of fibrotic genes in HST‐T6 cells induced by TGF‐β1 was repressed following the addition of isolated miR181‐5p‐ADSC exosomes compared with miR‐67‐ADSCexosomes. Exosome therapy attenuated liver injury and significantly down‐regulated collagen I, vimentin, α‐SMA and fibronectin in liver, compared with controls. Taken together, the effective anti‐fibrotic function of engineered ADSCs is able to selectively transfer miR‐181‐5p to damaged liver cells and will pave the way for the use of exosome‐ADSCs for therapeutic delivery of miRNA targeting liver disease.
Hepatology Research | 2013
Yan Wang; Ming-Yi Xu; Rui-Dan Zheng; Jian-Chun Xian; Hong-Tao Xu; Jun-Ping Shi; Shi-Bo Li; Ying Qu; Yuwei Dong; Lungen Lu
As liver biopsy has considerable limitations in the assessment of liver fibrosis, non‐invasive models have achieved great progress in the past. However, many tests consist of variables that are not readily available, and there are few data about patients with hepatitis B e‐antigen (HBeAg) negative chronic hepatitis B (CHB). The aim of this study was to develop a model using routine data to predict liver fibrosis in HBeAg negative CHB patients.
International Journal of Medical Sciences | 2012
Lei Zong; Ying Qu; Ming-Yi Xu; Yuwei Dong; Lun-gen Lu
Objective: To investigate the effects of 18α-glycyrrhetinic acid (18α-GA) on the expression of type I and III collagen in human and rat hepatic stellate cells (HSC) and to explore the role of TGF-β1/Smad signaling pathway involved. Methods: Following 18α-GA treatment, the cell viability and cell growth were detected to determine the optimal concentration of 18α-GA. The expressions of TGF-β1/Smad signaling-related genes including type I and III collagen in human and rat HSCs before and after 18α-GA treatment were measured by real time PCR. The expression of related proteins was verified by western blot assay. The phosphorylation level of Smad2 and Smad3 was detected by immunocytochemistry. The DNA binding activities of SP-1, AP-1 and NF-κB were measured by both EMSA and ArrayStar transcription factor activity assay. Results: 18α-GA could decrease the mRNA and protein expression of Smad3, type I and III collagen, increase the Smad7 expression in human and rat HSCs (P<0.05), and reduce phosphorylation level of Smad3 at 24 h and 48 h after treatment. The DNA binding activities of transcription factors were suppressed by 18α-GA in human and rat HSCs at 24 h, and the activities reduced in a time dependent manner with the lowest activities at 48 h, especially for SP-1. Conclusion: 18α-GA could inhibit the mRNA and protein expression of type I and III collagen in human and rat HSCs, which may be attributed to down-regulation of Smad3, up-regulation of Smad7, and inhibition of DNA binding activities of SP-1, AP-1 and NF-κB.
Medical Science Monitor | 2012
Ying Qu; Wei-Hua Chen; Lei Zong; Ming-Yi Xu; Lun-Gen Lu
Summary Background To investigate the potential mechanisms underlying the protective effects of 18α Glycyrrhizin (GL) on rat hepatic stellate cells (HSCs) and hepatocytes in vivo and in vitro. Material/Methods Sprague-Dawley (SD) rats were randomly divided into 5 groups: normal control group, liver fibrosis group, high-dose 18α GL group (25 mg/kg/d), intermediate-dose 18α GL group (12.5 mg/kg/d) and low-dose 18α GL group (6.25 mg/kg/d). The rat liver fibrosis model was induced by carbon tetrachloride (CCl4). The expressions of α-smooth muscle actin (αSMA) and NF-κB were determined by real-time PCR and immunohistochemistry. Results 18αGL dose-dependently inhibited the CCl4-induced liver fibrosis. There were significant differences in the mRNA and protein expressions of αSMA between the fibrosis group and 18α-GL treatment groups, suggesting that 18α GL can suppress the proliferation and activation of HSCs. Few HSCs were apoptotic in the portal area and fibrous septum in the liver fibrosis group. However, the double-color staining of a-SMA and TUNEL showed that 18α-GL treatment groups increased HSC apoptosis. NF-κB was mainly found in the nucleus in the fibrosis group, while cytoplasmic expression of NF-κB was noted in the 18αGL groups. In the in vitro experiments, 18α GL promoted the proliferation of hepatocytes, but inhibited that of HSCs. HSCs were arrested in the G2/M phase following 18α GL treatment and were largely apoptotic. Conclusions 18α-GL can suppress the activation of HSCs and induce the apoptosis of HSCs by blocking the translocation of NF-κB into the nucleus, which plays an important role in the protective effect of 18α-GL on liver fibrosis.
Molecular Medicine Reports | 2015
Qing-Qing Zhang; Ming-Yi Xu; Ying Qu; Zhenghong Li; Qidi Zhang; Xiaobo Cai; Lungen Lu
Considering the limitations of liver biopsy, reliable non-invasive serum biomarkers of liver fibrosis are required for early diagnosis. The present study analyzed the expression profile of circulating micro (mi)RNAs during the development and progression of hepatic fibrosis in patients with chronic hepatitis B virus (HBV) infection, aiming to identify novel earlier diagnostic biomarkers. Fresh plasma samples were collected from 50 patients diagnosed with chronic HBV infection and hepatic fibrosis. These patients were classified into five groups (S0, S1, S2, S3 and S4; n=10 per group) based on Scheuers staging criteria. The differential expression of the circulating miRNAs was determined by performing miRNA microarray hybridization. Finally, the target genes of the miRNAs were predicted and classified using gene ontology analysis. A total of 140 miRNAs were detected in the S1–S4 patient groups, and their expression levels were >2-fold higher compared with those in the S0 group. The numbers of miRNAs differentially expressed in the S1–S4 patient groups were 48, 97, 84 and 56, respectively, with 12 miRNAs differentially expressed at all stages, 10 of which were upregulated and two of which were downregulated. The target genes of the miRNAs identified were found to be involved in 100 signal transduction pathways, the majority of which affected hepatic fibrosis via the TGF-/Smad, Wnt, MAPK, Jak/STAT and VEGF pathways. The differential expression levels of miRNAs were closely associated with the staging of hepatic fibrosis. The results of the present study provide evidence to facilitate the development and application of non-invasive biomarkers for earlier diagnosis of hepatic fibrosis.
Cancer Letters | 2016
Ming-Yi Xu; Rong Chen; Jing-Xia Yu; Ting Liu; Ying Qu; Lungen Lu
Zinc-α2-glycoprotein 1 (AZGP1) has been found to play important roles in TGF-β1 induced epithelial-to-mesenchymal transition (EMT). However, the mechanisms of AZGP1 inhibiting EMT and its therapeutic potential remain unknown in hepatocellular carcinoma (HCC). AZGP1, TGF-β1 or ERK2 expressions were examined in liver tissues of HCC patients and rat model. The effect of AZGP1 on EMT and crosstalking of TGFβ1-ERK2 signaling in human hepatic cancer cell was tested in vitro and in vivo. Hepatic expression of AZGP1 was nearly deficient in HCC patients and rats. It was proved that AZGP1 has the ability of down-regulating mesenchymal markers, up-regulating epithelial marker, inhibiting cell invasion and suppressing EMT in human HCC cells. The results clarified that AZGP1 has the effect on blocking TGF-β1 mediated ERK2 phosphorylation leading to depressing EMT and invasive potential in vitro. Local injection of AZGP1 mimic in vivo could significantly withhold lung metastasis in HCC. In conclusion, loss of AZGP1 could trigger EMT induced by TGFβ1-ERK2 signaling, confuse in energy metabolism, reduce cell proliferation and apoptosis, activate survival signals and promote invasion. Up-regulation of AZGP1 should be proposed to reverse EMT and might be a new promising therapy for HCC.
Biomedicine & Pharmacotherapy | 2013
Ming-Yi Xu; Ying Qu; Xiaofang Jia; Mei-Ling Wang; Heng Liu; Xingpeng Wang; Lijun Zhang; Lun-Gen Lu
BACKGROUND AND AIM Because of the limitations of liver biopsy, reliable non-invasive serum biomarkers of liver fibrosis are needed. The aim of this study was to identify such markers by the use of serum proteomics in chronic hepatitis B (CHB). METHODS Two-dimensional gel electrophoresis (2-DE) was used to identify differentially expressed protein spots in sera from 40 CHB patients [20 with mild fibrosis (S0-S1) and 20 with severe fibrosis (S3-S4)]. Mass spectrometry (MS) based multiple reaction monitoring (MRM) was used to quantify peptide ions of differential protein spots in another set of sera from 86 CHB patients with different liver fibrosis (S0-S4). RESULTS Seven differentially expressed protein spots were found by 2-DE. Fourteen peptide ions of seven target protein spots were quantified by MS-based MRM. Summed peak areas ratio (SPAR) values of peptide ions from protein spot 1, 4 and 8, identified as apo serum transferrin, complement component C3c and transferrin, were significantly different from non-fibrosis (S0) to fibrosis stage 4. AUROCs of models established by peptide ions (protein spot 1, 4, 8) and model consisting of a combination of all ions were 0.848∼0.966 (S2-S4 versus S0-S1) and 0.785∼0.875 (S3-S4 versus S0-S2). Only the peptide ions model of transferrin had better sensitivity and specificity for predicting fibrosis stages than did aspartate aminotransferase-to-platelet ratio index (APRI), FIB-4 and Forns index. CONCLUSIONS Serum peptide ions of transferrin, detected by proteomic MRM, are new and promising biomarkers for staging liver fibrosis in CHB patients.
Cells Tissues Organs | 2016
Qidi Zhang; Ying Qu; Zhenghong Li; Qing-Qing Zhang; Ming-Yi Xu; Xiaobo Cai; Fei Li; Lungen Lu
There have been few reports on the simultaneous isolation of multiple liver cell populations thus far. As such, this study was aimed at establishing a protocol for the simultaneous separation of hepatocytes (HCs), hepatic stellate cells (HSCs), liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs) from the rat liver and assessing the in vitro culture of these cells. Single-cell suspensions from the liver were obtained by ethylene glycol tetraacetic acid/collagenase perfusion. After low-speed centrifugal separation of HCs, pronase was added to the nonparenchymal cell fraction to eliminate the remaining HCs. Subsequently, HSCs, LSECs and KCs were purified by two steps of density gradient centrifugation using Nycodenz and Percoll in addition to selective attachment. Pronase treatment increased the HSC yield (1.5 ± 0.2 vs. 0.7 ± 0.3 cells/g liver, p < 0.05) and improved LSEC purity (93.6 ± 3.6 vs. 82.5 ± 5.6%, p < 0.01). The isolated cells could also be cultured in vitro. LSEC apoptosis began on day 3 and reached a maximum on day 7. A few surviving LSECs began proliferating and split to form a cobblestone, sheet-like appearance on day 14. The LSECs on day 14 lost fenestrations but retained scavenger function. Thus, viable and purified liver cells were obtained with a high yield from the rat liver using the developed method, which may be useful for studying the physiology and pathology of the liver in the future.
Biochemistry and Cell Biology | 2016
Zhenghong Li; Qidi Zhang; Qing-Qing Zhang; Ming-Yi Xu; Ying Qu; Xiaobo Cai; Lungen Lu
Hepatocyte proliferation and collagen I (COLI) secretion are important processes during liver regeneration. This study aimed to investigate the role of CXCL6 in hepatocyte proliferation and COLI secretion. Serum CXCL6 levels in patients with chronic hepatitis B (CHB) were examined and the effects of CXCL6 on the proliferation of L02 hepatocytes and the secretion of COLI from LX2 human hepatic stellate cells were evaluated. We found that serum CXCL6 levels increased gradually with disease progression of CHB, and there was positive correlation between serum CXCL6 level and alanine transaminase (ALT) and aspartate transaminase (AST). In vitro, CXCL6 promoted L02 proliferation but this was blocked upon CXCR1 knockdown. The level of phospho-IκBα was upregulated by CXCL6 but downregulated by CXCR1 siRNA in L02 cells. CXCL6 inhibited the secretion of COLI by LX2 cells, dependent on CXCR1 and CXCR2. Taken together, these data suggest that increased expression of CXCL6 during CHB could promote hepatocyte proliferation through the CXCR1-NFκB pathway and inhibit the secretion of COLI by hepatic stellate cells.