Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ming-Zhu Ding is active.

Publication


Featured researches published by Ming-Zhu Ding.


Metabolomics | 2009

Comparative metabolomic analysis on industrial continuous and batch ethanol fermentation processes by GC-TOF-MS

Ming-Zhu Ding; Jing-Sheng Cheng; Wen-Hai Xiao; Bin Qiao; Ying-Jin Yuan

The intracellular metabolic profile characterization of Saccharomyces cerevisiae throughout industrial ethanol fermentation was investigated using gas chromatography coupled to time-of-flight mass spectrometry. A total of 143 and 128 intracellular metabolites in S. cerevisiae were detected and quantified in continuous and batch fermentations, respectively. The two fermentation processes were both clearly distinguished into three main phases by principal components analysis. Furthermore, the levels of some metabolites involved in central carbon metabolism varied significantly throughout both processes. Glycerol and phosphoric acid were principally responsible for discriminating seed, main and final phases of continuous fermentation, while lactic acid and glycerol contributed mostly to telling different phases of batch fermentation. In addition, the levels of some amino acids such as glycine varied significantly during both processes. These findings provide new insights into the metabolomic characteristics during industrial ethanol fermentation processes.


Metabolomics | 2012

Comparative metabolic profiling of parental and inhibitors-tolerant yeasts during lignocellulosic ethanol fermentation

Ming-Zhu Ding; Xin Wang; Yang Yang; Ying-Jin Yuan

The metabolic responses of parental and inhibitors-tolerant yeasts in presence of the combination of three inhibitors (furfural, phenol and acetic acid) during ethanol fermentation were investigated by comparative metabolic profiling. Samples of parental and tolerant yeasts with/without three inhibitors in fermentation medium represented significantly different metabolic states. Further investigation on the specific responses of two strains revealed that the levels of most amino acids, inositol, and phenethylamine were dramatically increased in presence of inhibitors in parental yeast, while they kept relatively stable in tolerant yeast. It suggested that the protein degradation was increased and oxygen stress was induced by combined inhibitors in parental yeast. In addition, carbon metabolism (glycolysis and TCA) and pyrimidine ribonucleotides pathway (uracil and cytosine) were reduced in both strains in presence of combined inhibitors, which was considered as the general stress response. Higher levels of pyridimines in tolerant yeast suggested that they were responsible for counteracting the stress of combined inhibitors. These findings provided new insights into underlying mechanisms of yeast in resistance to the synergistic effects of inhibitors in lignocellulose hydrolysates.


Journal of Biotechnology | 2009

Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics.

Ming-Zhu Ding; Hong-Chi Tian; Jing-Sheng Cheng; Ying-Jin Yuan

To investigate the metabolic regulation against inoculum density and stress response to high cell density, comparative metabolomic analysis was employed on Saccharomyces cerevisiae under fermentations with five different inoculum sizes by gas chromatography time-of-flight mass spectrometry. Samples from these fermentations were clearly distinguished by principal components analysis, indicating that inoculum size had a profound effect on the metabolism of S. cerevisiae. Potential biomarkers responsible for the discrimination were identified as glycerol, phosphoric acid, succinate, glycine, isoleucine, proline, palmitoleic acid, myo-inositol and ethanolamine. It indicated that enhanced stress protectants in glycerol biosynthesis and amino acid metabolism, depressed citric acid cycle intermediates, as well as decreased metabolites relating to membrane structure and function were involved as the inoculum size of yeast increased. Furthermore, significantly higher levels of glycerol and proline in yeast cells of higher inoculum size fermentation (40 g l(-1)) revealed that they played important roles in protecting yeast from stresses in high cell density fermentation. These findings provided new insights into characterizing the metabolic regulation and stress response depending on inoculum density during ethanol fermentation.


Journal of Biotechnology | 2010

Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress

Bing-Zhi Li; Jing-Sheng Cheng; Ming-Zhu Ding; Ying-Jin Yuan

Diploid and haploid strains often exhibit different tolerances to variety of stresses, which facilitates the comparative studies to understand the mechanism of the tolerances to stresses. Gene expression profiles of a diploid strain and two homologous haploid strains in the presence of ethanol at different concentrations were investigated by microarray and the data were validated with quantitative real-time PCR. In all the three strains, upregulated genes in the presence of ethanol were involved in regulation of lipid synthesis and ribosomal biogenesis, while downregulated genes in the presence of ethanol were involved in synthesis of several amino acids, metabolism of biotin and folic acid. In addition, differentially expressed genes in different ploidy strains, which showed less responsive to ethanol, were involved in pheromone response or mating, energy, stress response, metal transport and cell wall. Furthermore, our data also revealed significant differences between transcriptome shift after ethanol acclimation and transcriptome response to short-term ethanol shock. Taken together, these results provide molecular insights into tolerance difference of haploid and diploid yeast strains and molecular information to further understand ethanol tolerance mechanism in yeast.


Omics A Journal of Integrative Biology | 2012

Integrated Phospholipidomics and Transcriptomics Analysis of Saccharomyces cerevisiae with Enhanced Tolerance to a Mixture of Acetic Acid, Furfural, and Phenol

Jie Yang; Ming-Zhu Ding; Bing-Zhi Li; Z. Lewis Liu; Xin Wang; Ying-Jin Yuan

A mixture of acetic acid, furfural, and phenol (AFP), three representative lignocellulose-derived inhibitors, significantly inhibited the growth and bioethanol production of Saccharomyces cerevisiae. In order to uncover the mechanisms behind the enhanced tolerance of an inhibitor-tolerant S. cerevisiae strain (T), we measured the plasma membrane properties, which significantly influence cellular adaptation to inhibitors, of T strain and its parental strain (P) with and without AFP treatment. We integrated data obtained from multi-statistics-assisted phospholipidomics and parallel transcriptomics by using LC-tandem MS and microarray analysis. With the AFP treatment, the transcriptional changes of fatty acid metabolic genes showed a strong correlation with the increase of fatty-acyl-chain length of phosphatidylcholine (PC) and phosphatidylinositol (PI). This suggests a possible compensatory mechanism to cope with the increase of plasma membrane permeability and fluidity in both strains. Moreover, the absence of phosphatidylserine (PS) and phosphatidylethanolamine (PE) species from the most variable phospholipid species group was a discriminative feature of the T strain. This resulted from the decrease of CHO1 and increase of CHO2 levels of the T strain upon AFP treatment. These novel findings reveal that the coordinated transcription and phospholipid composition changes contribute to the increased robustness of the T strain and highlight potential metabolic engineering targets for mutants with higher tolerance.


Omics A Journal of Integrative Biology | 2011

Metabolomic Study of Interactive Effects of Phenol, Furfural, and Acetic Acid on Saccharomyces cerevisiae

Ming-Zhu Ding; Xin Wang; Yang Yang; Ying-Jin Yuan

Metabolic profiling was carried out to investigate the interactive effects of three representative inhibitors (furfural, phenol, and acetic acid) in lignocellulosic hydrolysate on Saccharomyces cerevisiae during ethanol fermentation. Our results revealed that three inhibitors exhibited significantly synergistic effects on the growth, fermentation, and some metabolites of yeast. Acetic acid exerted the most severe effects on yeast in the combination of three inhibitors, enhancing amino acids metabolism and inhibiting central carbon metabolism. The effects on yeast cells by acetic acid were enhanced by the presence of phenol and furfural, which might be owing to the loss of membrane integrity and the inhibition on metabolism. Further investigation indicated that the combination of inhibitors also exhibited antagonistic effects mainly on threonine, cadaverine, inositol, and tryptophan, weakening or reversing the effects of individual inhibitor. It might be due to the more severe damage by the combined inhibitors, and different repairing mechanism of cells in the presence of individual and combined inhibitors. Better understanding of the synergistic and antagonistic effects of the inhibitors will be helpful for the improvement of tolerant strains and the optimization of lignocellulosic fermentation.


Omics A Journal of Integrative Biology | 2010

Metabolome Analysis of Differential Responses of Diploid and Haploid Yeast to Ethanol Stress

Ming-Zhu Ding; Bing-Zhi Li; Jing-Sheng Cheng; Ying-Jin Yuan

Metabolomic analysis was carried out to investigate the metabolic differences of diploid (α/a) and homogenous haploid (α,a) yeasts, and further assess their response to ethanol stress. The dynamic metabolic variations of diploid and haploid caused by 3 and 7% (v/v) ethanol stress were evaluated by gas chromatography coupled to time-of-flight mass spectrometry combined with statistical analysis. Metabolite profiles originating from three strains in presence/absence of ethanol stress were distinctive and could be distinguished by principal components analysis. Results showed that the divergence among the strains with ethanol stress was smaller than without it. Furthermore, the levels of most glycolytic intermediates and amino acids in haploid were lower than these in diploid with/without ethanol stress, which was considered as species-specific behaviors. The increases of protective metabolites including polyols, amino acids, precursors of phospholipids, and unsaturated fatty acids under ethanol stress in three strains revealed the ethanol stress-specific responses. Higher fold change in most of these protectants in haploid indicated that haploid was more susceptible to ethanol stress than diploid. These findings provided underlying basis for better understanding diploid and haploid yeasts, and further breeding tolerant strains for efficient ethanol fermentation.


Metabolic Engineering | 2016

Heterologous biosynthesis and manipulation of alkanes in Escherichia coli.

Ying-Xiu Cao; Wen-Hai Xiao; Jin-Lai Zhang; Ze-Xiong Xie; Ming-Zhu Ding; Ying-Jin Yuan

Biosynthesis of alkanes in microbial foundries offers a sustainable and green supplement to traditional fossil fuels. The dynamic equilibrium of fatty aldehydes, key intermediates, played a critical role in microbial alkanes production, due to the poor catalytic capability of aldehyde deformylating oxygenase (ADO). In our study, exploration of competitive pathway together with multi-modular optimization was utilized to improve fatty aldehydes balance and consequently enhance alkanes formation in Escherichia coli. Endogenous fatty alcohol formation was supposed to be competitive with alkane production, since both of the two routes consumed the same intermediate-fatty aldehyde. Nevertheless, in our case, alkanes production in E. coli was enhanced from trace amount to 58.8mg/L by the facilitation of moderate fatty alcohol biosynthesis, which was validated by deletion of endogenous aldehyde reductase (AHR), overexpression of fatty alcohol oxidase (FAO) and consequent transcriptional assay of aar, ado and adhP genes. Moreover, alkanes production was further improved to 81.8mg/L, 86.6mg/L or 101.7mg/L by manipulation of fatty acid biosynthesis, lipids degradation or electron transfer system modules, which directly referenced to fatty aldehydes dynamic pools. A titer of 1.31g/L alkanes was achieved in 2.5L fed-batch fermentation, which was the highest reported titer in E. coli. Our research has offered a reference for chemical overproduction in microbial cell factories facilitated by exploring competitive pathway.


Omics A Journal of Integrative Biology | 2013

Metabolomic Analysis Reveals Key Metabolites Related to the Rapid Adaptation of Saccharomyce cerevisiae to Multiple Inhibitors of Furfural, Acetic Acid, and Phenol

Xin Wang; Bing-Zhi Li; Ming-Zhu Ding; Weiwen Zhang; Ying-Jin Yuan

During hydrolysis of lignocellulosic biomass, a broad range of inhibitors are generated, which interfere with yeast growth and bioethanol production. In order to improve the strain tolerance to multiple inhibitors--acetic acid, furfural, and phenol (three representative lignocellulose-derived inhibitors) and uncover the underlying tolerant mechanism, an adaptation experiment was performed in which the industrial Saccharomyces cerevisiae was cultivated repeatedly in a medium containing multiple inhibitors. The adaptation occurred quickly, accompanied with distinct increase in growth rate, glucose utilization rate, furfural metabolism rate, and ethanol yield, only after the first transfer. A similar rapid adaptation was also observed for the lab strains of BY4742 and BY4743. The metabolomic analysis was employed to investigate the responses of the industrial S. cereviaise to three inhibitors during the adaptation. The results showed that higher levels of 2-furoic acid, 2, 3-butanediol, intermediates in glycolytic pathway, and amino acids derived from glycolysis, were discovered in the adapted strains, suggesting that enhanced metabolic activity in these pathways may relate to resistance against inhibitors. Additionally, through single-gene knockouts, several genes related to alanine metabolism, GABA shunt, and glycerol metabolism were verified to be crucial for the resistance to multiple inhibitors. This study provides new insights into the tolerance mechanism against multiple inhibitors, and guides for the improvement of tolerant ethanologenic yeast strains for lignocellulose-bioethanol fermentation.


Applied Microbiology and Biotechnology | 2009

Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.

Jing-Sheng Cheng; Xiao Zhou; Ming-Zhu Ding; Ying-Jin Yuan

The responses and adaptation mechanisms of the industrial Saccharomyces cerevisiae to vacuum fermentation were explored using proteomic approach. After qualitative and quantitative analyses, a total of 106 spots corresponding to 68 different proteins were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The differentially expressed proteins were involved in amino acid and carbohydrate metabolisms, various signal pathways (Ras/MAPK, Ras–cyclic adenosine monophosphate, and HOG pathway), and heat shock and oxidative responses. Among them, alternations in levels of 17 proteins associated with carbohydrate metabolisms, in particular, the upregulations of proteins involved in glycolysis, trehalose biosynthesis, and the pentose phosphate pathway, suggested vacuum-induced redistribution of the metabolic fluxes. The upregulation of 17 heat stress and oxidative response proteins indicated that multifactors contributed to oxidative stresses by affecting cell redox homeostasis. Taken together with upregulation in 14-3-3 proteins levels, 22 proteins were detected in multispots, respectively, indicating that vacuum might have promoted posttranslational modifications of some proteins in S. cerevisiae. Further investigation revealed that the elevations of the differentially expressed proteins were mainly derived from vacuum stress rather than the absence of oxygen. These findings provide new molecular mechanisms for understanding of adaptation and tolerance of yeast to vacuum fermentation.

Collaboration


Dive into the Ming-Zhu Ding's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge