Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mingde Zang is active.

Publication


Featured researches published by Mingde Zang.


Oncotarget | 2016

Helicobacter pylori CagA induces tumor suppressor gene hypermethylation by upregulating DNMT1 via AKT-NFκB pathway in gastric cancer development

Baogui Zhang; Lei Hu; Mingde Zang; He-xiao Wang; W. Zhao; Jianfang Li; Liping Su; Zhifeng Shao; Xiaodong Zhao; Zhenggang Zhu; Min Yan; Bingya Liu

Methylation of CpG islands in tumor suppressor gene prompter is one of the most characteristic abnormalities in Helicobacter pylori (HP)-associated gastric carcinoma (GC). Here, we investigated the pathogenic and molecular mechanisms underlying hypermethylation of tumor suppressor genes in HP induced GC development. We found that tumor suppressor genes hypermethylation, represented by MGMT, positively correlated with CagA in clinical specimens, gastric tissues from HP infected C57 mice and GC cell lines transfected by CagA or treated by HP infection. CagA enhanced PDK1 and AKT interaction and increased AKT phosphorylation. The P-AKT subsequent activated NFκB, which then bound to DNMT1 promoter and increased its expression. Finally, the upregulated DNMT1 promoted tumor suppressor genes hypermethylation with MGMT as a representative. In conclusion, CagA increased tumor suppressor genes hypermethylation via stimulating DNMT1 expression through the AKT-NFκB pathway.


PLOS ONE | 2014

CEACAM6 Promotes Gastric Cancer Invasion and Metastasis by Inducing Epithelial-Mesenchymal Transition via PI3K/AKT Signaling Pathway

Mingde Zang; Baogui Zhang; Yunqiang Zhang; Jianfang Li; Liping Su; Zhenggang Zhu; Qinlong Gu; Bingya Liu; Min Yan

Overexpressed CEACAM6 in tumor tissues plays important roles in invasion, metastasis and anoikis resistance in a variety of human cancers. We recently reported that CEACAM6 expression is upregulated in Gastric cancer (GC) tissues and promoted GC metastasis. Here, we report that CEACAM6 promotes peritoneal metastases in vivo and is negatively correlated with E-cadherin expression in GC tissues. Overexpressed CEACAM6 induced epithelial-mesenchymal transition (EMT) in GC, as measured by increases in the EMT markers N-cadherin, Vimentin and Slug while E-cadherin expression was decreased in CEACAM6-overexpressing GC cells; opposing results were observed in CEACAM6-silenced cells. Furthermore, E-cadherin expression was negatively correlated with depth of tumor invasion, lymph node metastasis and TNM stage in GC tissues. Additionally, CEACAM6 elevated matrix metalloproteinase-9 (MMP-9) activity in GC, and anti-MMP-9 antibody could reverse the increasing invasion and migration induced by CEACAM6. CEACAM6 also increased the levels of phosphorylated AKT, which is involved in the progression of a variety of human tumors. We further observed that LY294002, a PI3K inhibitor, could reverse CEACAM6-induced EMT via mesenchymal-epithelial transition. These findings suggest that CEACAM6 enhances invasion and metastasis in GC by promoting EMT via the PI3K/AKT signaling pathway.


Biochimica et Biophysica Acta | 2015

CEACAM6 promotes tumor angiogenesis and vasculogenic mimicry in gastric cancer via FAK signaling.

Mingde Zang; Yunqiang Zhang; Baogui Zhang; Lei Hu; Jianfang Li; Zhiyuan Fan; He-xiao Wang; Liping Su; Zhenggang Zhu; Chen Li; Chao Yan; Qinlong Gu; Bingya Liu; Min Yan

CEACAM6 is a member of glycosylphosphatidylinositol-linked immunoglobulin superfamily that is implicated in a variety of human cancers. In our previous study, we reported that CEACAM6 was overexpressed in gastric cancer tissues and promoted cancer metastasis. The purpose of this study is to determine the role of CEACAM6 in tumor angiogenesis and mimicry formation. We found that overexpressed CEACAM6 promoted tubule formation dependent on HUVEC cells and vasculogenic mimicry formation of gastric cancer cells; opposing results were achieved in CEACAM6-silenced groups. Moreover, we found that mosaic vessels formed by HUVEC cells and gastric cancer cells were observed in vitro by 3D-culture assay. Overexpressed CEACAM6 in gastric cancer cells promoted tumor growth, VEGF expression and vasculogenic mimicry structures formation in vivo. In accordance with these observations, we found that phosphorylation of FAK and phosphorylation of paxillin were up-regulated in CEACAM6-overexpressing gastric cancer cells, and FAK inhibitor Y15 could reduce tubule and vasculogenic mimicry formation. These findings suggest that CEACAM6 promotes tumor angiogenesis and vasculogenic mimicry formation via FAK signaling in gastric cancer and CEACAM6 may be a new target for cancer anti-vascular treatment.


Molecular Oncology | 2016

Biglycan stimulates VEGF expression in endothelial cells by activating the TLR signaling pathway

Lei Hu; Mingde Zang; He-xiao Wang; Jianfang Li; Liping Su; Min Yan; Chen Li; Qiumeng Yang; Bingya Liu; Zhenggang Zhu

Biglycan (BGN) is an important component of the extracellular matrix (ECM) that is implicated in a variety of human cancers. In our previous study, we reported that BGN was overexpressed in gastric cancer (GC) tissues and promoted cancer metastasis. Moreover, the tubular formation capacity in HUVECs was promoted by stimulation with culture media from BGN‐overexpressing GC cells, but the exact underlying mechanism is still unknown. The purpose of this study was to determine the role and molecular mechanism of BGN in VEGF expression in endothelial cells. We found that BGN stimulation of endothelial cells increased the interaction between NF‐kB and the HIF‐1α promoter, leading to enhanced promoter activity and increased HIF‐1α mRNA levels, as well as augmented HIF‐1 activity that resulted in VEGF expression. All of this was dependent on the interaction of BGN with its receptors, TLR2 and TLR4. Moreover, we found that BGN enhanced endothelial cell migration and proliferation, as well as tube formation, in a TLR signaling pathway‐dependent manner. In addition, endothelial cell‐derived VEGF in turn was found to act on GC cells and promotes their migration. The combined findings of our current and previous studies suggest that BGN secreted from GC cells into the tumor stroma promotes GC development, as well as its progression, potentially through the chronic activation of tumor angiogenesis.


Biochemical and Biophysical Research Communications | 2017

Luteolin suppresses angiogenesis and vasculogenic mimicry formation through inhibiting Notch1-VEGF signaling in gastric cancer

Mingde Zang; Lei Hu; Baogui Zhang; Zhenglun Zhu; Jianfang Li; Zhenggang Zhu; Min Yan; Bingya Liu

Gastric cancer is a great threat to the health of the people worldwide and lacks effective therapeutic regimens. Luteolin is one of Chinese herbs and presents in many fruits and green plants. In our previous study, we observed that luteolin inhibited cell migration and promoted cell apoptosis in gastric cancer. In the present study, luteolin significantly inhibited tube formation of human umbilical vein endothelial cells (HUVECs) through decreasing cell migration and proliferation of HUVECs in a dose-dependent manner. Vasculogenic mimicry (VM) tubes formed by gastric cancer cells were also inhibited with luteolin treatment. To explore how luteolin inhibited tubes formation, ELISA assay for VEGF was performed. Both of the VEGF secretion from Hs-746T cells and HUVECs were significantly decreased subsequent to luteolin treatment. In addition, cell migration was increased with the interaction between gastric cancer cells and HUVECs in co-culture assays. However, the promoting effects were abolished subsequent to luteolin treatment. Furthermore, luteolin inhibited VEGF secretion through suppressing Notch1 expression in gastric cancer. Overexpression of Notch1 in gastric cancer cells partially rescued the effects on cell migration, proliferation, HUVECs tube formation, and VM formation induced by luteolin treatment. In conclusion, luteolin inhibits angiogenesis and VM formation in gastric cancer through suppressing VEGF secretion dependent on Notch1 expression.


Oncotarget | 2016

REG4 promotes peritoneal metastasis of gastric cancer through GPR37

He-xiao Wang; Lei Hu; Mingde Zang; Baogui Zhang; Yantao Duan; Zhiyuan Fan; Jianfang Li; Liping Su; Min Yan; Zhenggang Zhu; Bingya Liu; Qiumeng Yang

Being the major reason of recurrence and death after surgery, peritoneal metastasis of gastric cancer dooms the prognosis of advanced gastric cancer patients. Regenerating islet-derived family, member 4 (REG4) is believed to promote peritoneal metastasis, however, its mechanism is still a moot point at present. In the present study, we show that high expression of REG4 correlates with advanced stage and poor survival prognosis for gastric cancer patients. REG4 overexpression significantly enhances peritoneal metastasis by increasing adhesion ability. Moreover, SP1 is proved to be a transcription factor of REG4 and induce REG4 expression upon TGF-alpha stimulation. Also, G protein-coupled receptor 37 (GPR37) is identified to be in the same complex of REG4, which mediates REG4′s signal transduction and promotes peritoneal metastasis of gastric cancer cell. Interestingly, we also discover a positive feedback loop triggered by REG4, amplifying itself through EGFR transactivation, consisting of GPR37, ADAM17, TGF-alpha, EGFR, SP1 and REG4. In conclusion, REG4 promotes peritoneal metastasis of gastric cancer through GPR37 and triggers a positive feedback loop.


Acta Biochimica et Biophysica Sinica | 2014

CEACAM6 promotes tumor migration, invasion, and metastasis in gastric cancer

Yunqiang Zhang; Mingde Zang; Jianfang Li; Jun Ji; Jianian Zhang; Xiaolei Liu; Ying Qu; Liping Su; Chen Li; Yinyan Yu; Zhenggang Zhu; Bingya Liu; Min Yan

Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) shows increased expression in a wide variety of human cancers, and its over-expression is associated with enhanced migration, invasion, and in vivo metastasis. Here, we reported that CEACAM6 was up-regulated in gastric cancer (GC) cell lines and tumor tissues. Over-expression of CEACAM6 in MKN-45 and SGC-7901 GC cells promoted migration and invasion in vitro and metastasis in athymic mice, whereas migration and invasion of MKN-28 and SNU-16 GC cells were suppressed by knockdown of CEACAM6. We also observed that steroid receptor coactivator (C-SRC) phosphorylation was increased when CEACAM6 was over-expressed in SGC-7901 cells. Taken together, these results suggested that CEACAM6 functions as an oncoprotein in GC and may be an important metastatic biomarker and therapeutic target.


Journal of Translational Medicine | 2017

Luteolin suppresses gastric cancer progression by reversing epithelial-mesenchymal transition via suppression of the Notch signaling pathway

Mingde Zang; Lei Hu; Zhiyuan Fan; He-xiao Wang; Zhenglun Zhu; Shu Cao; Xiongyan Wu; Jianfang Li; Liping Su; Chen Li; Zhenggang Zhu; Min Yan; Bingya Liu

BackgroundGastric cancer (GC) is one of the most malignant tumors and the second leading cause of cancer-related deaths in the world. Luteolin, a flavonoid present in many fruits and green plants, suppresses cancer progression. The effects of luteolin on GC cells and their underlying mechanisms remain unclear.MethodsEffects of luteolin on cell proliferation, migration, invasion, and apoptosis were examined in vitro and in vivo by cell counting kit-8 (CCK-8), transwell assays, and flow cytometry, respectively. Real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blots were performed to evaluate Notch1 signaling and activation of epithelial-mesenchymal transition (EMT) in GC cells treated with or without luteolin. Immunohistochemistry was performed to examine proliferation and Notch1 expression in xenograft tumors.ResultsLuteolin significantly inhibited cell proliferation, invasion, and migration in a dose-dependent and time-dependent manner and promoted cell apoptosis. Luteolin reversed EMT by shrinking the cytoskeleton and by inducing the expression of epithelial biomarker E-cadherin and downregulating the mesenchymal biomarkers N-cadherin, vimentin and Snail. Furthermore, Notch1 signaling was inhibited by luteolin, and downregulation of Notch1 had similar effects as luteolin treatment on cell proliferation, migration, and apoptosis. In addition, luteolin suppressed tumor growth in vivo. A higher expression of Notch1 correlated with a poor overall survival and a poor time to first progression. Furthermore, co-immunoprecipitation analysis revealed that activated Notch1 and β-catenin formed a complex and regulated cell proliferation, migration, and invasion.ConclusionsIn this study, GC progression was inhibited by luteolin through suppressing Notch1 signaling and reversing EMT, suggesting that luteolin may serve as an effective anti-tumor drug in GC treatment.


Cell Death and Disease | 2018

G9A promotes gastric cancer metastasis by upregulating ITGB3 in a SET domain-independent manner

Lei Hu; Mingde Zang; He-xiao Wang; Baogui Zhang; Zhenqiang Wang; Zhiyuan Fan; Huo Wu; Jianfang Li; Liping Su; Min Yan; Zhi-qiang Zhu; Qiumeng Yang; Qiang Huang; Bingya Liu; Zhenggang Zhu

Tumor metastasis is the leading cause of death in patients with advanced gastric cancer (GC). Limited therapeutic regimens are available for this condition, which is associated with a poor prognosis, and the mechanisms underlying tumor metastasis remain unclear. In the present study, increased histone methyltransferase G9A expression in GC tissues correlated with advanced stage and shorter overall survival, and in vitro and in vivo experiments revealed that G9A promoted tumor invasion and metastasis. Moreover, we observed that Reg IV induced G9A via the p-ERK/p-SP1 pathway. SP1 directly binds the G9A promoter and enhances G9A expression, and upregulated G9A then forms a transcriptional activator complex with P300 and GR, thereby promoting ITGB3 expression induced by dexamethasone (DEX) and contributing to GC metastasis. However, the G9A-mediated increase in ITGB3 expression was not dependent on the SET domain and methyltransferase activity of G9A. This study demonstrates that G9A is an independent prognostic marker and promotes metastasis in GC, thus suggesting that it may be a tumor biomarker and potential therapeutic target in GC.


Scientific Reports | 2017

Dual role of carcinoembryonic antigen-related cell adhesion molecule 6 expression in predicting the overall survival of gastric cancer patients

Mingde Zang; Lei Hu; Shu Cao; Zhiyuan Fan; Li Pang; Jianfang Li; Liping Su; Chen Li; Wentao Liu; Qinlong Gu; Zhenggang Zhu; Min Yan; Bingya Liu

Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is a member of the glycosylphosphatidylinositol-linked immunoglobulin superfamily that is implicated in many human cancers. Here, we aimed to investigate the role of CEACAM6 expression in predicting the overall survival (OS) in gastric cancer (GC). The impact of CEACAM6 on the survival of patients with GC (n = 876) was assessed using an online Kaplan-Meier plotter. Findings were validated using the OS data of patients (n = 160) recruited from Ruijin Hospital. We found that high CEACAM6 expression was associated with a better OS in early-stage or well-differentiated GC, or who were treated without 5-fluorouracil (5-FU). Conversely, high CEACAM6 expression was associated with a poor OS in advanced-stage GC, poorly differentiated tumors, or who were treated with 5-FU. Furthermore, CEACAM6 may serve as a better marker for predicting OS in GC than CEA. In addition, CEACAM6 overexpression in GC cells increased apoptotic resistance to 5-FU. Moreover, CEACAM6 induced cluster of differentiation 4- and 8-positive lymphocytes were detected in early-stage GC. In conclusion, CEACAM6 plays a contradictory role in predicting the OS in GC. In early-stage GC, high CEACAM6 expression is associated with improved OS. However, in advanced-stage GC, high CEACAM6 expression is associated with a poor OS.

Collaboration


Dive into the Mingde Zang's collaboration.

Top Co-Authors

Avatar

Bingya Liu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jianfang Li

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Min Yan

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Zhenggang Zhu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Liping Su

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Lei Hu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Baogui Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Chen Li

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

He-xiao Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Zhiyuan Fan

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge