Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mingfeng Cao is active.

Publication


Featured researches published by Mingfeng Cao.


Bioresource Technology | 2011

Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes.

Mingfeng Cao; Weitao Geng; Li Liu; Cunjiang Song; Hui Xie; Wenbin Guo; Yinghong Jin; Shufang Wang

A new glutamic acid independent poly-γ-glutamic acid (γ-PGA) producing strain, which was identified as Bacillus amyloliquefaciens LL3 by analysis of 16S rDNA and gyrase subunit A gene (gyrA), was isolated from fermented food. The product had a molecular weight of 470, 801 and l-glutamate monomer content of 98.47%. The pre-optimal medium, based on single-factor tests and orthogonal design, contained 50 g/L sucrose, 2g/L (NH(4))(2)SO(4), 0.6g/L MgSO(4), and provided well-balanced changes in processing parameters and a γ-PGA yield of 4.36 g/L in 200 L system. The γ-PGA synthetase genes pgsBCA were cloned from LL3, and successfully expressed by pTrcLpgs vector in Escherichia coli JM109, resulting the synthesis of γ-PGA without glutamate. This study demonstrates the designedly improved yield of γ-PGA in 200 L system and the first report of pgsBCA from glutamic acid independent strain, which will benefit the metabolized mechanism investigation and the wide-ranging application of γ-PGA.


Journal of Bacteriology | 2011

Complete Genome Sequence of Bacillus amyloliquefaciens LL3, Which Exhibits Glutamic Acid-Independent Production of Poly-γ-Glutamic Acid

Weitao Geng; Mingfeng Cao; Cunjiang Song; Hui Xie; Li Liu; Chao Yang; Jun Feng; Wei Zhang; Yinghong Jin; Yang Du; Shufang Wang

Bacillus amyloliquefaciens is one of most prevalent Gram-positive aerobic spore-forming bacteria with the ability to synthesize polysaccharides and polypeptides. Here, we report the complete genome sequence of B. amyloliquefaciens LL3, which was isolated from fermented food and presents the glutamic acid-independent production of poly-γ-glutamic acid.


Metabolic Engineering | 2015

Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering

Jun Feng; Yanyan Gu; Yufen Quan; Mingfeng Cao; Weixia Gao; Wei Zhang; Shufang Wang; Chao Yang; Cunjiang Song

A Bacillus amyloliquefaciens strain with enhanced γ-PGA production was constructed by metabolically engineering its γ-PGA synthesis-related metabolic networks: by-products synthesis, γ-PGA degradation, glutamate precursor synthesis, γ-PGA synthesis and autoinducer synthesis. The genes involved in by-products synthesis were firstly deleted from the starting NK-1 strain. The obtained NK-E7 strain with deletions of the epsA-O (responsible for extracellular polysaccharide synthesis), sac (responsible for levan synthesis), lps (responsible for lipopolysaccharide synthesis) and pta (encoding phosphotransacetylase) genes, showed increased γ-PGA purity and slight increase of γ-PGA titer from 3.8 to 4.15 g/L. The γ-PGA degrading genes pgdS (encoding poly-gamma-glutamate depolymerase) and cwlO (encoding cell wall hydrolase) were further deleted. The obtained NK-E10 strain showed further increased γ-PGA production from 4.15 to 9.18 g/L. The autoinducer AI-2 synthetase gene luxS was deleted in NK-E10 strain and the resulting NK-E11 strain showed comparable γ-PGA titer to NK-E10 (from 9.18 to 9.54 g/L). In addition, we overexpressed the pgsBCA genes (encoding γ-PGA synthetase) in NK-E11 strain; however, the overexpression of these genes led to a decrease in γ-PGA production. Finally, the rocG gene (encoding glutamate dehydrogenase) and the glnA gene (glutamine synthetase) were repressed by the expression of synthetic small regulatory RNAs in NK-E11 strain. The rocG-repressed NK-anti-rocG strain exhibited the highest γ-PGA titer (11.04 g/L), which was 2.91-fold higher than that of the NK-1 strain. Fed-batch cultivation of the NK-anti-rocG strain resulted in a final γ-PGA titer of 20.3g/L, which was 5.34-fold higher than that of the NK-1 strain in shaking flasks. This work is the first report of a systematically metabolic engineering approach that significantly enhanced γ-PGA production in a B. amyloliquefaciens strain. The engineering strategies explored here are also useful for engineering cell factories for the production of γ-PGA or of other valuable metabolites.


Applied Microbiology and Biotechnology | 2014

A markerless gene replacement method for B. amyloliquefaciens LL3 and its use in genome reduction and improvement of poly-γ-glutamic acid production

Wei Zhang; Weixia Gao; Jun Feng; Chi Zhang; Yulian He; Mingfeng Cao; Qiang Li; Yang Sun; Chao Yang; Cunjiang Song; Shufang Wang

We herein adapted a markerless gene replacement method by combining a temperature-sensitive plasmid pKSV7 with a counterselectable marker, the upp gene encoding uracil phosphoribosyltransferase (UPRTase), for the poly-γ-glutamic acid (γ-PGA)-producing strain Bacillus amyloliquefaciens LL3. Deletion of the upp gene conferred LL3 5-fluorouracil (5-FU) resistance. Sensitivity to 5-FU was restored when LL3 Δupp was transformed with pKSV7-based deletion plasmid which carries a functional allele of the upp gene of Bacillus subtilis 168. These observations allowed us to adapt a two-step plasmid integration and excision strategy to perform markerless deletion of genes of interest. Deletion plasmid harboring a mutant allele of the target gene was first integrated in the genome by culturing cells under nonpermissive conditions for pKSV7 replication. Single-crossover recombinants were then grown without antibiotics to aid the second recombinational event. 5-FU was used to select for double-crossover recombinants with plasmid evicted from the chromosome. The resulting recombinants either harbored the wild-type or mutated allele of the target gene and could be identified by PCR and DNA sequencing. Using this method, we successively removed the amyA gene and a 47-kb fragment of the bae cluster from the genome of LL3, with higher efficiency compared with previous reports. We also investigated the effects of a transcriptional regulator, RocR, on γ-PGA production and cell growth. Specific γ-PGA production of the rocR mutant was increased by 1.9-fold, which represents a new way to improve γ-PGA production.


Microbial Biotechnology | 2014

Metabolic engineering of Bacillus amyloliquefaciens for poly‐gamma‐glutamic acid (γ‐PGA) overproduction

Jun Feng; Yanyan Gu; Yang Sun; Lifang Han; Chao Yang; Wei Zhang; Mingfeng Cao; Cunjiang Song; Weixia Gao; Shufang Wang

We constructed a metabolically engineered glutamate‐independent Bacillus amyloliquefaciens strain with considerable γ‐PGA production. It was carried out by double‐deletion of the cwlO gene and epsA‐O cluster, as well as insertion of the vgb gene in the bacteria chromosome. The final generated strain NK‐PV elicited the highest production of γ‐PGA (5.12 g l−1), which was 63.2% higher than that of the wild‐type NK‐1 strain (3.14 g l−1). The γ‐PGA purity also improved in the NK‐PV strain of 80.4% compared with 76.8% for the control. Experiments on bacterial biofilm formation experiment showed that NK‐1 and NK‐c (ΔcwlO) strains can form biofilm; the epsA‐O deletion NK‐7 and NK‐PV strains could only form an incomplete biofilm.


Scientific Reports | 2015

Recruiting a new strategy to improve levan production in Bacillus amyloliquefaciens

Jun Feng; Yanyan Gu; Yufen Quan; Wei Zhang; Mingfeng Cao; Weixia Gao; Cunjiang Song; Chao Yang; Shufang Wang

Microbial levan is an important biopolymer with considerable potential in food and medical applications. Bacillus amyloliquefaciens NK-ΔLP strain can produce high-purity, low-molecular-weight levan, but production is relatively low. To enhance the production of levan, six extracellular protease genes (bpr, epr, mpr, vpr, nprE and aprE), together with the tasA gene (encoding the major biofilm matrix protein TasA) and the pgsBCA cluster (responsible for poly-γ-glutamic acid (γ-PGA) synthesis), were intentionally knocked out in the Bacillus amyloliquefaciens NK-1 strain. The highest levan production (31.1 g/L) was obtained from the NK-Q-7 strain (ΔtasA, Δbpr, Δepr, Δmpr, Δvpr, ΔnprE, ΔaprE and ΔpgsBCA), which was 103% higher than that of the NK-ΔLP strain (ΔpgsBCA) (15.3 g/L). Furthermore, the NK-Q-7 strain also showed a 94.1% increase in α-amylase production compared with NK-ΔLP strain, suggesting a positive effect of extracellular protease genes deficient on the production of endogenously secreted proteins. This is the first report of the improvement of levan production in microbes deficient in extracellular proteases and TasA, and the NK-Q-7 strain exhibits outstanding characteristics for extracellular protein production or extracellular protein related product synthesis.


Biosensors and Bioelectronics | 2016

A photoacoustic immunoassay for biomarker detection.

Yunfei Zhao; Mingfeng Cao; John F. McClelland; Zengyi Shao; Meng Lu

Challenges in protein biomarker analysis include insufficient sensitivity for detecting low-abundance biomarkers, poor measurement reproducibility, and the high costs and large footprints of detection systems. To address these issues, a new detection modality was developed for analyzing protein biomarkers based on the plasmon-enhanced photoacoustic (PA) effect. The detection modality employed a heterogeneous immunoassay scheme and used gold nanoparticles (AuNPs) as the signal reporter. Due to their localized plasmon resonance, AuNPs can strongly interact with intensity-modulated laser excitation and generate strong PA signals, which are subsequently sensed and quantified using a microphone. As an example, the performance of the PA immunoassay was evaluated by detecting the human interleukin 8 chemokine. The PA immunoassay provided approximately 143× lower limit of detection (LOD) than observed with the gold standard enzyme-linked immunosorbent assay - a decrease from 23pg/mL to 0.16pg/mL. In addition to the significant performance improvement in terms of the LOD, the PA immunoassay also offers advantages in terms of compatibility with low-cost instruments and the long-term stability of assay results.


Metabolic Engineering | 2017

Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors

Miguel Suástegui; Chiam Yu Ng; Anupam Chowdhury; Wan Sun; Mingfeng Cao; Emma House; Costas D. Maranas; Zengyi Shao

A multilevel approach was implemented in Saccharomyces cerevisiae to optimize the precursor module of the aromatic amino acid biosynthesis pathway, which is a rich resource for synthesizing a great variety of chemicals ranging from polymer precursor, to nutraceuticals and pain-relief drugs. To facilitate the discovery of novel targets to enhance the pathway flux, we incorporated the computational tool YEASTRACT for predicting novel transcriptional repressors and OptForce strain-design for identifying non-intuitive pathway interventions. The multilevel approach consisted of (i) relieving the pathway from strong transcriptional repression, (ii) removing competing pathways to ensure high carbon capture, and (iii) rewiring precursor pathways to increase the carbon funneling to the desired target. The combination of these interventions led to the establishment of a S. cerevisiae strain with shikimic acid (SA) titer reaching as high as 2.5gL-1, 7-fold higher than the base strain. Further expansion of the platform led to the titer of 2.7gL-1 of muconic acid (MA) and its intermediate protocatechuic acid (PCA) together. Both the SA and MA production platforms demonstrated increases in titer and yield nearly 300% from the previously reported, highest-producing S. cerevisiae strains. Further examination elucidated the diverged impacts of disrupting the oxidative branch (ZWF1) of the pentose phosphate pathway on the titers of desired products belonging to different portions of the pathway. The investigation of other non-intuitive interventions like the deletion of the Pho13 enzyme also revealed the important role of the transaldolase in determining the fate of the carbon flux in the pathways of study. This integrative approach identified novel determinants at both transcriptional and metabolic levels that constrain the flux entering the aromatic amino acid pathway. In the future, this platform can be readily used for engineering the downstream modules toward the production of important plant-sourced aromatic secondary metabolites.


World Journal of Microbiology & Biotechnology | 2017

Microbial production of poly-γ-glutamic acid

Sarote Sirisansaneeyakul; Mingfeng Cao; Nuttawut Kongklom; Chaniga Chuensangjun; Zhongping Shi; Yusuf Chisti

Poly-γ-glutamic acid (γ-PGA) is a natural, biodegradable and water-soluble biopolymer of glutamic acid. This review is focused on nonrecombinant microbial production of γ-PGA via fermentation processes. In view of its commercial importance, the emphasis is on l-glutamic acid independent producers (i.e. microorganisms that do not require feeding with the relatively expensive amino acid l-glutamic acid to produce γ-PGA), but glutamic acid dependent production is discussed for comparison. Strategies for improving production, reducing costs and using renewable feedstocks are discussed.


Fems Microbiology Letters | 2015

Construction of a Bacillus amyloliquefaciens strain for high purity levan production.

Jun Feng; Yanyan Gu; Lifang Han; Kexin Bi; Yufeng Quan; Chao Yang; Wei Zhang; Mingfeng Cao; Shufang Wang; Weixia Gao; Yang Sun; Cunjiang Song

Bacillus amyloliquefaciens NK-1 has the potential to produce levan and poly-gamma-glutamic acid (γ-PGA) simultaneously. However, it is not possible to purify each single product from the same strain because the extraction process is identical. We deleted the pgs cluster (for γ-PGA synthesis) from the NK-1 strain and constructed a γ-PGA-deficient NK-ΔLP strain. Nuclear magnetic results showed that the NK-ΔLP strain could produce high purity levan product. However, its levan titer was only 1.96 g L(-1) in the basal medium. Single-factor experimental and response surface methodology was used to optimize the culture condition, leading to levan titer of 13.9 and 22.6 g L(-1) in flask culture and in a 5-L bioreactor, respectively. The levan purity can reach to 92.7% after 48 h cultivation. Furthermore, the relationship between levanase (LevB) and levan molecular weight was studied. The results showed that LevB resulted in the production of low molecular weight levan and its expression level determined the ratio of high and low molecular weight levan. We also deleted the sac cluster (for levan synthesis) from the NK-1 strain and constructed a levan-deficient NK-L strain. The NK-L strain exhibited increased purity of γ-PGA product from 79.5 to 91.2%.

Collaboration


Dive into the Mingfeng Cao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge