Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Minghai Zhang is active.

Publication


Featured researches published by Minghai Zhang.


Cell and Tissue Banking | 2013

Isolation and characterization of mesenchymal stem cells from chicken bone marrow.

Chunyu Bai; Lingling Hou; Yuehui Ma; Lina Chen; Minghai Zhang; Weijun Guan

The bone marrow mesenchymal stem cells (BMSCs) are multipotent stem cells, which can differentiate in vitro into many cell types. However, the vast majority of experimental materials were obtained from human, mouse, rabbit and other mammals, but rarely in poultry. So, in this study, Thirty- to sixty-day old chicken was chosen as experimental animal, to isolate and characterize BMSCs from them. To investigate the biological characteristics of chicken BMSCs, immunofluorescence and RT-PCR were used to detect the characteristic surface markers of BMSCs. Growth curves were drawn in accordance with cell numbers. To assess the differentiation capacity of the BMSCs, cells were induced to differentiate into osteoblasts, adipocytes, and endothelial cells. The surface markers of BMSCs, CD29, CD44, CD31, CD34, CD71 and CD73, were detected by immunofluorescence and RT-PCR assays. The growth curves of different passages were all typically sigmoidal. Karyotype analysis showed that these in vitro cultured cells were genetically stable. In addition, BMSCs were successfully induced to differentiate into osteoblasts, adipocytes, and endothelial cells. The results suggest that the BMSCs isolated from chicken possess similar biological characteristics with those separated from other species, and their multi-lineage differentiation potentiality herald a probable application for cellular transplant therapy in tissue engineering.


Artificial Cells Nanomedicine and Biotechnology | 2015

Differentiation of chicken umbilical cord mesenchymal stem cells into beta-like pancreatic islet cells

Chunyu Bai; Yuhua Gao; Qian Li; Yuan Feng; Yanze Yu; Gentong Meng; Minghai Zhang; Weijun Guan

Abstract In this study, we explored the possibility of using in vitro differentiation to create functional beta-like islet cells from chicken umbilical cord mesenchymal stem cells (UCMSCs). Passaged UCMSCs were induced to differentiate into pancreatic beta-like islet cells. Differentiated cells were observed through dithizone staining, and Pdx1 and insulin expressed in differentiated cells were detected with immunofluorescence. Insulin and C-peptide production from differentiated cells were analyzed using ELISA and western blotting. Differentiated cells were found to not only express Pdx1, insulin, and C-peptide, but also to display a glucose-responsive secretion of these hormones.


Molecular and Cellular Biochemistry | 2013

Biological characterization of chicken mesenchymal stem/progenitor cells from umbilical cord Wharton’s Jelly

Chunyu Bai; Xiangcheng Li; Lingling Hou; Minghai Zhang; Weijun Guan; Yuehui Ma

Mesenchymal stem/progenitor cells derived from Wharton’s jelly of the umbilical cord (UCMSCs/UCMPCs) are multipotent, and can be differentiated in vitro into many cell types. Much work has been done on UCMSCs/UCMPCs from humans, mice, rabbits, and other mammals, but the relatively little literature has been published about these cells in chickens. In our work, we isolated USMSCs/USMPCs from chicken embryos. We characterized the isolated cells using immunofluorescence and reverse transcription polymerase chain reaction techniques. Primary UCMSCs/UCMPCs were subcultured to passage 30 and growth curves for each passage determined. The growth curves at different passages were all typically sigmoidal. Isolated UCMSCs/UCMPCs were induced to differentiate into adipocytes, osteoblasts, myocardial cells, and neural cells, and we were able to detect characteristic CD44, CD29, CD73, and CD71 cell surface markers. Our results suggest that UCMSCs/UCMPCs isolated from chickens possess similar biological characteristics to those from other species. Their multi-lineage differentiation capabilities herald a probable application for cellular transplant therapy in tissue engineering.Mesenchymal stem/progenitor cells derived from Wharton’s jelly of the umbilical cord (UCMSCs/UCMPCs) are multipotent, and can be differentiated in vitro into many cell types. Much work has been done on UCMSCs/UCMPCs from humans, mice, rabbits, and other mammals, but the relatively little literature has been published about these cells in chickens. In our work, we isolated USMSCs/USMPCs from chicken embryos. We characterized the isolated cells using immunofluorescence and reverse transcription polymerase chain reaction techniques. Primary UCMSCs/UCMPCs were subcultured to passage 30 and growth curves for each passage determined. The growth curves at different passages were all typically sigmoidal. Isolated UCMSCs/UCMPCs were induced to differentiate into adipocytes, osteoblasts, myocardial cells, and neural cells, and we were able to detect characteristic CD44, CD29, CD73, and CD71 cell surface markers. Our results suggest that UCMSCs/UCMPCs isolated from chickens possess similar biological characteristics to those from other species. Their multi-lineage differentiation capabilities herald a probable application for cellular transplant therapy in tissue engineering.


BMC Veterinary Research | 2012

Characterization of vascular endothelial progenitor cells from chicken bone marrow

Chunyu Bai; Lingling Hou; Minghai Zhang; Yabin Pu; Weijun Guan; Yuehui Ma

BackgroundEndothelial progenitor cells (EPC) are a type of stem cell used in the treatment of atherosclerosis, vascular injury and regeneration. At present, most of the EPCs studied are from human and mouse, whereas the study of poultry-derived EPCs has rarely been reported. In the present study, chicken bone marrow-derived EPCs were isolated and studied at the cellular level using immunofluorescence and RT-PCR.ResultsWe found that the majority of chicken EPCs were spindle shaped. The growth-curves of chicken EPCs at passages (P) 1, -5 and -9 were typically “S”-shaped. The viability of chicken EPCs, before and after cryopreservation was 92.2% and 81.1%, respectively. Thus, cryopreservation had no obvious effects on the viability of chicken EPCs. Dil-ac-LDL and FITC-UAE-1 uptake assays and immunofluorescent detection of the cell surface markers CD34, CD133, VEGFR-2 confirmed that the cells obtained in vitro were EPCs. Observation of endothelial-specific Weibel-Palade bodies using transmission electron microscopy further confirmed that the cells were of endothelial lineage. In addition, chicken EPCs differentiated into endothelial cells and smooth muscle cells upon induction with VEGF and PDGF-BB, respectively, suggesting that the chicken EPCs retained multipotency in vitro.ConclusionsThese results suggest that chicken EPCs not only have strong self-renewal capacity, but also the potential to differentiate into endothelial and smooth muscle cells. This research provides theoretical basis and experimental evidence for potential therapeutic application of endothelial progenitor cells in the treatment of atherosclerosis, vascular injury and diabetic complications.


International Journal of Molecular Sciences | 2013

Construction of a full-length enriched cDNA library and preliminary analysis of expressed sequence tags from Bengal Tiger Panthera tigris tigris.

Changqing Liu; Dan Liu; Yu Guo; Taofeng Lu; Xiangchen Li; Minghai Zhang; Jianzhang Ma; Yuehui Ma; Weijun Guan

In this study, a full-length enriched cDNA library was successfully constructed from Bengal tiger, Panthera tigris tigris, the most well-known wild Animal. Total RNA was extracted from cultured Bengal tiger fibroblasts in vitro. The titers of primary and amplified libraries were 1.28 × 106 pfu/mL and 1.56 × 109 pfu/mL respectively. The percentage of recombinants from unamplified library was 90.2% and average length of exogenous inserts was 0.98 kb. A total of 212 individual ESTs with sizes ranging from 356 to 1108 bps were then analyzed. The BLASTX score revealed that 48.1% of the sequences were classified as a strong match, 45.3% as nominal and 6.6% as a weak match. Among the ESTs with known putative function, 26.4% ESTs were found to be related to all kinds of metabolisms, 19.3% ESTs to information storage and processing, 11.3% ESTs to posttranslational modification, protein turnover, chaperones, 11.3% ESTs to transport, 9.9% ESTs to signal transducer/cell communication, 9.0% ESTs to structure protein, 3.8% ESTs to cell cycle, and only 6.6% ESTs classified as novel genes. By EST sequencing, a full-length gene coding ferritin was identified and characterized. The recombinant plasmid pET32a-TAT-Ferritin was constructed, coded for the TAT-Ferritin fusion protein with two 6× His-tags in N and C-terminal. After BCA assay, the concentration of soluble Trx-TAT-Ferritin recombinant protein was 2.32 ± 0.12 mg/mL. These results demonstrated that the reliability and representativeness of the cDNA library attained to the requirements of a standard cDNA library. This library provided a useful platform for the functional genome and transcriptome research of Bengal tigers.


Cell Communication and Adhesion | 2012

Isolation and biological characteristics of beijing Fatty chicken skeletal muscle satellite cells.

Chunyu Bai; Lingling Hou; Fanghua Li; Xiaohong He; Minghai Zhang; Weijun Guan

Abstract Skeletal muscle satellite cells, a postulated multipotential stem cell population, play an essential role in the postnatal replenishment of skeletal muscles. In the present research, the skeletal muscle satellite cells were isolated from the pectorals of 15-day-old Beijing Fatty Chicken embryos using combined enzymatic digestion of 0.1% collagenase 1 and 0.25% trypsin. Myogenic markers such as MyoD, Pax7 and demin were detected, indicating their skeletal muscle satellite cell identity. Karyotype analysis showed that these in vitro cultured cells were genetically stable. Being exposed to bone morphogen and adipogenic factors, it was proved that they differentiated into osteocytes and adipocytes correspondingly.


Cell Proliferation | 2013

Identification and biological characterization of chicken embryonic cardiac progenitor cells

Chunyu Bai; Lingling Hou; Minghai Zhang; L. Wang; W. Guan; Y. Ma

Objectives: Many kinds of cardiac progenitor cell populations have been identified, including c‐kit+, Nkx2.5+s and GATA4+ cells. However, these progenitors have limited ability to differentiate into different cardiac cell types. Recently, a new kind of cardiac progenitor cell named the multipotent Isl1+ cardiovascular progenitor (MICPs) has been identified, which also expresses Nkx2.5, GATA4, CD34 and Flk1. Materials and methods: In this study, we have isolated and characterized MICPs from chicken embryonic heart tissues using immunofluorescence and PCR. Results: Results shown that they express markers of cardiac progenitor cells, with high clonality. They have the ability to self‐renew and can give rise to three types of heart cell in vitro. Conclusions: Myocytes, smooth muscle cells and endothelial cells. Our work provides evidence for a developmental paradigm of the heart, that endothelial and muscle lineage diversification arises from multipotent cardiac progenitor cells. Existence of these cells provides a new opportunity for myocardial injury repair.


Animal Cells and Systems | 2017

Differentiation potential of neural stem cells derived from fetal sheep

Qian Li; Shuang Zhang; Yanjie Zheng; Hebao Wen; Xiao Han; Minghai Zhang; Weijun Guan

ABSTRACT Neural stem cells (NSCs) are multipotent stem cells that can differentiate into many cell types in vitro. In this study, we isolated and established an NSC line from fetal Ovis aries. Based on the results of immunofluorescence staining, NSCs expressed Nestin, Pax6 and MAP2. Moreover, a reverse transcription–polymerase chain reaction assay was used to biologically characterize the cell line. NSCs were induced to differentiate into neurogenic cells in vitro. They expressed MAP2, glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP). In this study, we successfully isolated and cultivated NSCs from the hippocampal tissue of fetal sheep. NSCs not only displayed a self-renewal capacity but also had the potential to differentiate into neurons and glial cells. This study provided valuable experimental data for NSC transplant research.


Mitochondrial DNA | 2016

The complete mitochondrial genome of Sika deer Cervus nippon hortulorum (Artiodactyla: Cervidae) and phylogenetic studies

Yan-Hua Liu; Xin-Xin Liu; Minghai Zhang

Abstract Sika deer (Cervus nippon Temminck 1836) are classified in the order Artiodactyla, family Cervidae, subfamily Cervinae. At present, the phylogenetic studies of C. nippon are problematic. In this study, we first determined and described the complete mitochondrial sequence of the wild C. nippon hortulorum. The complete mitogenome sequence is 16 566 bp in length, including 13 protein-coding genes, two rRNA genes, 22 tRNA genes, a putative control region (CR) and a light-strand replication origin (OL). The overall base composition was 33.4% A, 28.6% T, 24.5% C, 13.5% G, with a 62.0% AT bias. The 13 protein-coding genes encode 3782 amino acids in total. To further validate the new determined sequences and phylogeny of Sika deer, phylogenetic trees involving 15 most closely related species available in GenBank database were constructed. These results are expected to provide useful molecular data for deer species identification and further phylogenetic studies of Artiodactyla.


Mitochondrial DNA | 2016

Complete mitochondrial genome of a Wild Amur Moose (Alces alces cameloides).

Yanze Yu; Yuan Feng; Hongcheng Wang; Yong Yang; Yubao Duan; Zhengyan Zhou; Minghai Zhang

Abstract In this study, the complete mitochondrial genome (mt DNA) of Amur Moose (Alces alces cameloides) was sequenced, using muscle tissue obtained from a male Amur moose. The total length of the mitochondrial genome is 16,305 bp. The genome structure of Amur moose is similar to other moose and it contains 12S rRNA gene, 16S rRNA gene, 22 tRNA genes, 13 protein-coding genes, and 1 control region.

Collaboration


Dive into the Minghai Zhang's collaboration.

Top Co-Authors

Avatar

Chunyu Bai

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar

Lingling Hou

Beijing Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Qian Li

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar

Yanze Yu

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar

Yuan Feng

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gentong Meng

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar

Hongcheng Wang

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar

Jianzhang Ma

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar

Xin-Xin Liu

Northeast Forestry University

View shared research outputs
Researchain Logo
Decentralizing Knowledge