Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Minghong Ma is active.

Publication


Featured researches published by Minghong Ma.


Nature Neuroscience | 2007

Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors.

Xavier Grosmaitre; Lindsey Ciali Santarelli; Jie Tan; Minmin Luo; Minghong Ma

Most sensory systems are primarily specialized to detect one sensory modality. Here we report that olfactory sensory neurons (OSNs) in the mammalian nose can detect two distinct modalities transmitted by chemical and mechanical stimuli. As revealed by patch-clamp recordings, many OSNs respond not only to odorants, but also to mechanical stimuli delivered by pressure ejections of odor-free Ringer solution. The mechanical responses correlate directly with the pressure intensity and show several properties similar to those induced by odorants, including onset latency, reversal potential and adaptation to repeated stimulation. Blocking adenylyl cyclase or knocking out the cyclic nucleotide–gated channel CNGA2 eliminates the odorant and the mechanical responses, suggesting that both are mediated by a shared cAMP cascade. We further show that this mechanosensitivity enhances the firing frequency of individual neurons when they are weakly stimulated by odorants and most likely drives the rhythmic activity (theta oscillation) in the olfactory bulb to synchronize with respiration.


Neuron | 2010

Odor Information Processing by the Olfactory Bulb Analyzed in Gene-Targeted Mice

Jie Tan; Agnès Savigner; Minghong Ma; Minmin Luo

In mammals, olfactory sensory neurons (OSNs) expressing a specific odorant receptor (OR) gene project with precise stereotypy onto mitral/tufted (M/T) cells in the main olfactory bulb (MOB). It remains challenging to understand how incoming olfactory signals are transformed into outputs of M/T cells. By recording from OSNs expressing mouse I7 receptor and their postsynaptic neurons in the bulb, we found that I7 OSNs and their corresponding M/T cells exhibit similarly selective tuning profiles at low concentrations. Increasing the concentration significantly reduces response selectivity for both OSNs and M/T cells, although the tuning curve of M/T cells remains comparatively narrow. By contrast, interneurons in the MOB are broadly tuned, and blocking GABAergic neurotransmission reduces selectivity of M/T cells at high odorant concentrations. Our results indicate that olfactory information carried by an OR is channeled to its corresponding M/T cells and support the role of lateral inhibition via interneurons in sharpening the tuning of M/T cells.


The Journal of Neuroscience | 2009

SR1, a Mouse Odorant Receptor with an Unusually Broad Response Profile

Xavier Grosmaitre; Stefan H. Fuss; Anderson C. Lee; Kaylin A. Adipietro; Hiroaki Matsunami; Peter Mombaerts; Minghong Ma

The current consensus model in mammalian olfaction is that the detection of millions of odorants requires a large number of odorant receptors (ORs) and that each OR interacts selectively with a small subset of odorants, which are typically related in structure. Here, we report the odorant response properties of an OR that deviates from this model: SR1, a mouse OR that is abundantly expressed in sensory neurons of the septal organ and also of the main olfactory epithelium. Patch-clamp recordings reveal that olfactory sensory neurons (OSNs) that express SR1 respond to many, structurally unrelated odorants, and over a wide concentration range. Most OSNs expressing a gene-targeted SR1 locus that lacks the SR1 coding sequence do not show this broad responsiveness. Gene transfer in the heterologous expression system Hana3A confirms the broad response profile of SR1. There may be other mouse ORs with such broad response profiles.


The Journal of Neuroscience | 2003

Olfactory Signal Transduction in the Mouse Septal Organ

Minghong Ma; Xavier Grosmaitre; Carrie L. Iwema; Harriet Baker; Charles A. Greer; Gordon M. Shepherd

The septal organ, a distinct chemosensory organ observed in the mammalian nose, is essentially a small island of olfactory neuroepithelium located bilaterally at the ventral base of the nasal septum. Virtually nothing is known about its physiological properties and function. To understand the nature of the sensory neurons in this area, we studied the mechanisms underlying olfactory signal transduction in these neurons. The majority of the sensory neurons in the septal organ express olfactory-specific G-protein and adenylyl cyclase type III, suggesting that the cAMP signaling pathway plays a critical role in the septal organ as in the main olfactory epithelium (MOE). This is further supported by patch-clamp recordings from individual dendritic knobs of the sensory neurons in the septal organ. Odorant responses can be mimicked by an adenylyl cyclase activator and a phosphodiesterase inhibitor, and these responses can be blocked by an adenylyl cyclase inhibitor. There is a small subset of cells in the septal organ expressing a cGMP-stimulated phosphodiesterase (phosphodiesterase 2), a marker for the guanylyl cyclase-D subtype sensory neurons identified in the MOE. The results indicate that the septal organ resembles the MOE in major olfactory signal transduction pathways, odorant response properties, and projection to the main olfactory bulb. Molecular and functional analysis of the septal organ, which constitutes ∼1% of the olfactory epithelium, will provide new insights into the organization of the mammalian olfactory system and the unique function this enigmatic organ may serve.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Crucial role of copper in detection of metal-coordinating odorants

Xu-Fang Duan; Eric Block; Zhen Li; Timothy Connelly; Jian Zhang; Zhimin Huang; Xubo Su; Yi Pan; Lifang Wu; Qiuyi Chi; Siji Thomas; Shao-Zhong Zhang; Minghong Ma; Hiroaki Matsunami; Guo-Qiang Chen; Hanyi Zhuang

Odorant receptors (ORs) in olfactory sensory neurons (OSNs) mediate detection of volatile odorants. Divalent sulfur compounds, such as thiols and thioethers, are extremely potent odorants. We identify a mouse OR, MOR244-3, robustly responding to (methylthio)methanethiol (MeSCH2SH; MTMT) in heterologous cells. Found specifically in male mouse urine, strong-smelling MTMT [human threshold 100 parts per billion (ppb)] is a semiochemical that attracts female mice. Nonadjacent thiol and thioether groups in MTMT suggest involvement of a chelated metal complex in MOR244-3 activation. Metal ion involvement in thiol–OR interactions was previously proposed, but whether these ions change thiol-mediated OR activation remained unknown. We show that copper ion among all metal ions tested is required for robust activation of MOR244-3 toward ppb levels of MTMT, structurally related sulfur compounds, and other metal-coordinating odorants (e.g., strong-smelling trans-cyclooctene) among >125 compounds tested. Copper chelator (tetraethylenepentamine, TEPA) addition abolishes the response of MOR244-3 to MTMT. Histidine 105, located in the third transmembrane domain near the extracellular side, is proposed to serve as a copper-coordinating residue mediating interaction with the MTMT–copper complex. Electrophysiological recordings of the OSNs in the septal organ, abundantly expressing MOR244-3, revealed neurons responding to MTMT. Addition of copper ion and chelator TEPA respectively enhanced and reduced the response of some MTMT-responding neurons, demonstrating the physiological relevance of copper ion in olfaction. In a behavioral context, an olfactory discrimination assay showed that mice injected with TEPA failed to discriminate MTMT. This report establishes the role of metal ions in mammalian odor detection by ORs.


Journal of Neurophysiology | 2009

Modulation of Spontaneous and Odorant-Evoked Activity of Rat Olfactory Sensory Neurons by Two Anorectic Peptides, Insulin and Leptin

Agnès Savigner; Patricia Duchamp-Viret; Xavier Grosmaitre; Michel Chaput; Samuel Garcia; Minghong Ma; Brigitte Palouzier-Paulignan

In mammals, the sense of smell is modulated by the status of satiety, which is mainly signaled by blood-circulating peptide hormones. However, the underlying mechanisms linking olfaction and food intake are poorly understood. Here we investigated the effects of two anorectic peptides, insulin and leptin, on the functional properties of olfactory sensory neurons (OSNs). Using patch-clamp recordings, we analyzed the spontaneous activity of rat OSNs in an in vitro intact epithelium preparation. Bath perfusion of insulin and leptin significantly increased the spontaneous firing frequency in 91.7% (n = 24) and 75.0% (n = 24) of the cells, respectively. When the activity was electrically evoked, both peptides shortened the latency to the first action potential by approximately 25% and decreased the interspike intervals by approximately 13%. While insulin and leptin enhanced the electrical excitability of OSNs in the absence of odorants, they surprisingly reduced the odorant-induced activity in the olfactory epithelium. Insulin and leptin decreased the peak amplitudes of isoamyl acetate-induced electroolfactogram (EOG) signals to 46 and 38%, respectively. When measured in individual cells by patch-clamp recordings, insulin and leptin decreased odorant-induced transduction currents and receptor potentials. Therefore by increasing the spontaneous activity but reducing the odorant-induced activity of OSNs, an elevated insulin and leptin level (such as after a meal) may result in a decreased global signal-to-noise ratio in the olfactory epithelium, which matches the smell ability to the satiety status.


The Journal of Neuroscience | 2011

Olfactory Marker Protein Is Critical for Functional Maturation of Olfactory Sensory Neurons and Development of Mother Preference

Anderson C. Lee; Jiwei He; Minghong Ma

Survival of many altricial animals critically depends on the sense of smell. Curiously, the olfactory system is rather immature at birth and undergoes a maturation process, which is poorly understood. Using patch-clamp technique on mouse olfactory sensory neurons (OSNs) with a defined odorant receptor, we demonstrate that OSNs exhibit functional maturation during the first month of postnatal life by developing faster response kinetics, higher sensitivity, and most intriguingly, higher selectivity. OSNs expressing mouse odorant receptor 23 (MOR23) are relatively broadly tuned in neonates and become selective detectors for the cognate odorant within 2 weeks. Remarkably, these changes are prevented by genetic ablation of olfactory marker protein (OMP), which is exclusively expressed in mature OSNs. Biochemical and pharmacological evidence suggests that alteration in odorant-induced phosphorylation of signaling proteins underlie some of the OMP−/− phenotypes. Furthermore, in a novel behavioral assay in which the mouse pups are given a choice between the biological mother and another unfamiliar lactating female, wild-type pups prefer the biological mother, while OMP knock-out pups fail to show preference. These results reveal that OSNs undergo an OMP-dependent functional maturation process that coincides with early development of the smell function, which is essential for pups to form preference for their mother.


Chemical Senses | 2009

Expression Patterns of Odorant Receptors and Response Properties of Olfactory Sensory Neurons in Aged Mice

Anderson C. Lee; Huikai Tian; Xavier Grosmaitre; Minghong Ma

The sense of smell deteriorates in normal aging, but the underling mechanisms are still elusive. Here we investigated age-related alterations in expression patterns of odorant receptor (OR) genes and functional properties of olfactory sensory neurons (OSNs)-2 critical factors that define the odor detection threshold in the olfactory epithelium. Using in situ hybridization for 9 representative OR genes, we compared the cell densities of each OR in coronal nose sections at different ages (3-27 months). The cell density for different ORs peaked at different time points and a decline was observed for 6 of 9 ORs at advanced ages. Using patch clamp recordings, we then examined the odorant responses of individual OSNs coexpressing a defined OR (MOR23) and green fluorescent protein. The MOR23 neurons recorded from aged animals maintained a similar sensitivity and dynamic range in response to the cognate odorant (lyral) as those from younger mice. The results indicate that although the cell densities of OSNs expressing certain types of ORs decline at advanced ages, individual OSNs can retain their sensitivity. The implications of these findings in age-related olfactory deterioration are discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2015

G protein-coupled odorant receptors underlie mechanosensitivity in mammalian olfactory sensory neurons

Timothy Connelly; Yiqun Yu; Xavier Grosmaitre; Jue Wang; Lindsey Ciali Santarelli; Agnès Savigner; Xin Qiao; Zhenshan Wang; Daniel R. Storm; Minghong Ma

Significance Mechanical stimuli (pressure, shear stress, membrane stretch, etc.) are a basic form of stimulation that can induce physiological responses in many body organs (skin, muscle, ear, lung, airway, kidney, blood vessels, etc.). The current dogma in sensory systems is that mechanical stimuli are mainly transduced by force-gated ion channels. Our study reveals a previously unidentified cascade for mechanotransduction in neurons and suggests that G protein-coupled receptors may have an overlooked function as mechanical sensors. This finding establishes a molecular mechanism through which the nose sends an afferent signal of breathing to the brain to facilitate integration of orofacial sensation and synchronize delta/theta-band activity in certain brain regions with respiration. Mechanosensitive cells are essential for organisms to sense the external and internal environments, and a variety of molecules have been implicated as mechanical sensors. Here we report that odorant receptors (ORs), a large family of G protein-coupled receptors, underlie the responses to both chemical and mechanical stimuli in mouse olfactory sensory neurons (OSNs). Genetic ablation of key signaling proteins in odor transduction or disruption of OR–G protein coupling eliminates mechanical responses. Curiously, OSNs expressing different OR types display significantly different responses to mechanical stimuli. Genetic swap of putatively mechanosensitive ORs abolishes or reduces mechanical responses of OSNs. Furthermore, ectopic expression of an OR restores mechanosensitivity in loss-of-function OSNs. Lastly, heterologous expression of an OR confers mechanosensitivity to its host cells. These results indicate that certain ORs are both necessary and sufficient to cause mechanical responses, revealing a previously unidentified mechanism for mechanotransduction.


PLOS ONE | 2013

Activity-Dependent Modulation of Odorant Receptor Gene Expression in the Mouse Olfactory Epithelium

Shaohua Zhao; Huikai Tian; Limei Ma; Ying Yuan; C. Ron Yu; Minghong Ma

Activity plays critical roles in development and maintenance of the olfactory system, which undergoes considerable neurogenesis throughout life. In the mouse olfactory epithelium, each olfactory sensory neuron (OSN) stably expresses a single odorant receptor (OR) type out of a repertoire of ∼1200 and the OSNs with the same OR identity are distributed within one of the few broadly-defined zones. However, it remains elusive whether and how activity modulates such OR expression patterns. Here we addressed this question by investigating OR gene expression via in situ hybridization when sensory experience or neuronal excitability is manipulated. We first examined the expression patterns of fifteen OR genes in mice which underwent neonatal, unilateral naris closure. After four-week occlusion, the cell density in the closed (sensory-deprived) side was significantly lower (for four ORs), similar (for three ORs), or significantly higher (for eight ORs) as compared to that in the open (over-stimulated) side, suggesting that sensory inputs have differential effects on OSNs expressing different OR genes. We next examined the expression patterns of seven OR genes in transgenic mice in which mature OSNs had reduced neuronal excitability. Neuronal silencing led to a significant reduction in the cell density for most OR genes tested and thinner olfactory epithelium with an increased density of apoptotic cells. These results suggest that sensory experience plays important roles in shaping OR gene expression patterns and the neuronal activity is critical for survival of OSNs.

Collaboration


Dive into the Minghong Ma's collaboration.

Top Co-Authors

Avatar

Xavier Grosmaitre

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Wenqin Luo

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huikai Tian

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Agnès Savigner

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Anderson C. Lee

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge