Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mingjuan Liao is active.

Publication


Featured researches published by Mingjuan Liao.


Molecular and Cellular Biology | 2006

Phosphatidylinositol 3-Kinase/Protein Kinase Cζ-Induced Phosphorylation of Sp1 and p107 Repressor Release Have a Critical Role in Histone Deacetylase Inhibitor-Mediated Derepression of Transcription of the Luteinizing Hormone Receptor Gene

Ying Zhang; Mingjuan Liao; Maria L. Dufau

We have demonstrated that silencing of luteinizing hormone receptor (LHR) gene transcription is mediated via a proximal Sp1 site at its promoter. Trichostatin A (TSA) induced histone acetylation and gene activation in JAR cells that prevailed in the absence of changes in Sp1/Sp3 expression, their binding activity, disassociation of the histone deacetylase/mSin3A complex from the Sp1 site, or demethylation of the promoter. This indicated a different mechanism involved in TSA-induced derepression. The present studies have revealed that phosphatidylinositol 3-kinase/protein kinase Czeta (PI3K/PKCzeta)-mediated Sp1 phosphorylation accounts for Sp1 site-dependent LHR gene activation. TSA caused marked phosphorylation of Sp1 at serine 641 in JAR and MCF-7 cells. Blockade of PI3K or PKCzeta activity by specific inhibitors, kinase-deficient mutants, or small interfering RNA abolished the effect of TSA on the LHR gene and Sp1 phosphorylation. PKCzeta was shown to associate with Sp1, and this association was enhanced by TSA. Sp1 phosphorylation at serine 641 was required for the release of the pRb homologue p107 from the LHR gene promoter, while p107 acted as a repressor of the LHR gene. Inhibition of PKCzeta activity blocked the dissociation of p107 from the LHR gene promoter and markedly reduced Sp1 phosphorylation and transcription. These results have demonstrated that phosphorylation of Sp1 by PI3K/PKCzeta is critical for TSA-activated LHR gene expression. These studies have revealed a novel mechanism of TSA action through derecruitment of a repressor from the LHR gene promoter in a PI3K/PKCzeta-induced Sp1 phosphorylation-dependent manner.


Molecular Endocrinology | 2008

Protein Kinase Cα-Induced Derepression of the Human Luteinizing Hormone Receptor Gene Transcription through ERK-Mediated Release of HDAC1/Sin3A Repressor Complex from Sp1 Sites

Mingjuan Liao; Ying Zhang; Maria L. Dufau

LH receptor (LHR) gene transcription is subject to repression/derepression through various modes and multiple effectors. Epigenetic silencing and activation of the LHR is achieved through coordinated regulation at both histone and DNA levels. The LHR gene is subject to repression by deacetylation and methylation at its promoter region, where a HDAC/mSin3A repressor complex is anchored at Sp1 sites. The present studies revealed that protein kinase C (PKC) alpha/ERK signaling is important for the activation of LHR promoter activity, and the increase of endogenous transcripts induced by phorbol-12-myristate-13-acetate (PMA) in HeLa cells. Whereas these effects were attributable to PKCalpha activity, the ERK pathway was the downstream effector in LHR activation. PMA caused a significant enhancement of Sp1 phosphorylation at serine residue (s), which was blocked by PKCalpha or ERK inhibition. The interaction of activated phosphorylated ERK with Sp1 and ERKs association with the LHR promoter points to Sp1 as a direct target of ERK. After Sp1 phosphorylation, the HDAC1/mSin3A repressor complex dissociated from Sp1 sites, histone 3 was acetylated, and transcription factor II B and RNA polymerase II were recruited. In addition, overexpression of a constitutively active PKCalpha (PKCalpha CA) strongly activated LHR transcription in MCF-7 cells (devoid of PKCalpha), induced Sp1 phosphorylation at serine residue (s) and caused derecruitment of HDAC1/mSin3A complex from the promoter. These effects were negated by cotransfection of a dominant-negative PKCalpha. In conclusion, these studies have revealed a novel regulatory signaling mechanism of transcriptional control in which the LHR is derepressed through PKCalpha/ERK-mediated Sp1 phosphorylation, causing the release of HDAC1/mSin3A complex from the promoter.


Journal of Biological Chemistry | 2008

Unlocking Repression of the Human Luteinizing Hormone Receptor Gene by Trichostatin A-induced Cell-specific Phosphatase Release

Ying Zhang; Mingjuan Liao; Maria L. Dufau

Our previous studies demonstrated that the histone deacetylase inhibitor, trichostatin A (TSA), induces derepression of the human luteinizing hormone receptor (LHR) gene by de-recruitment of the pRB homologue p107 repressor from the promoter in JAR and MCF-7 cancer cells. TSA initiates a mechanism whereby the phosphatidylinositol 3-kinase/protein kinase ζ (PKCζ) cascade phosphorylates Sp1 at Ser-641, which is essential for the release of the repression of LHR transcription. The present studies have revealed that dissociation of serine/threonine protein phosphatases PP2A and PP1 from the LHR promoter mediates TSA-induced activation of LHR gene transcription in a cell-specific manner. Changes in chromatin structure induced by TSA cause the release of PP2A in JAR cells or of PP1 in MCF-7 cells, which is associated with Sp1 directly or through histone deacetylase 1/2, respectively, at the promoter. This favors the phosphorylation of Sp1 mediated by the phosphatidylinositol 3-kinase/PKCζ pathway, which in turn causes the release of the p107 inhibitor from Sp1 and marked transcriptional activation of the LHR. These findings reveal the importance of phosphatases in the control of LHR transcription, where the balance between phosphatidylinositol 3-kinase/PKCζ and phosphatases could be critical for up- and down-regulation of LHR gene expression in physiological and pathological settings.


Journal of Biological Chemistry | 2011

Coactivator Function of Positive Cofactor 4 (PC4) in Sp1-directed Luteinizing Hormone Receptor (LHR) Gene Transcription

Mingjuan Liao; Ying Zhang; Jung-Hoon Kang; Maria L. Dufau

The LHR has an essential role in sexual development and reproductive function, and its transcription is subjected to several modes of regulation. In this study, we investigated PC4 coactivator function in the control of LHR transcription. Knockdown of PC4 by siRNA inhibited the LHR basal promoter activity and trichostatin A (TSA)-induced gene transcriptional activation and expression in MCF-7 cells. While overexpression of PC4 alone had no effect on the LHR gene, it significantly enhanced Sp1- but not Sp3-mediated LHR transcriptional activity. PC4 directly interacts with Sp1 at the LHR promoter, and this interaction is negatively regulated by PC4 phosphorylation. The coactivator domain (22–91 aa) of PC4 and DNA binding domain of Sp1 are essential for PC4/Sp1 interaction. ChIP assay revealed significant occupancy of PC4 at the LHR promoter that increased upon TSA treatment. Disruption of PC4 expression significantly reduced TSA-induced recruitment of TFIIB and RNAP II, at the promoter. PC4 functions are beyond TSA-induced phosphatase release, PI3K-mediated Sp1 phosphorylation, and HDAC1/2/mSin3A co-repressor release indicating its role as linker coactivator of Sp1 and the transcriptional machinery. These findings demonstrated a critical aspect of LHR modulation whereby PC4 acts as a coactivator of Sp1 to contribute to the human of LHR transcription.


Biochimica et Biophysica Acta | 2018

Interaction of positive coactivator 4 with histone 3.3 protein is essential for transcriptional activation of the luteinizing hormone receptor gene

Peng Zhao; Raghuveer Kavarthapu; Rajakumar Anbazhagan; Mingjuan Liao; Maria L. Dufau

The luteinizing hormone receptor (LHR) is essential for sexual development and reproduction in mammals. We have established that Sp1 has a central role in derepression of LHR gene transcription induced by Trichostatin A (TSA) in MCF7 cells. Moreover, the co-activator PC4 which associates directly with Sp1 at the LHR promoter is essential for TSA-mediated LHR transcription. This study explores interactions of PC4 with histone proteins, which presumably triggers chromatin modifications during LHR transcriptional activation. TSA treatment of MCF7 cells expressing PC4-Flag protein induces acetylation of histone 3 (H3) and immunoprecipitation (IP) studies revealed its interaction with PC4-Flag protein. MS/MS analysis of the protein complex obtained after IP from TSA treated samples detected H3.3 acetylated at K9, K14, K18, K23 and K27 as a PC4 interacting protein. The association of PC4 with H3.3 was corroborated by IP and re-ChIP using H3.3 antibody. Similarly, IP and re-ChIP showed association of PC4 with H3 acetylated protein. Knockdown of PC4 in MCF7 cells reduced H3.3 enrichment, H3 acetylation at the Lys sites and LHR promoter activity in TSA treated cells despite an increase in H3 and H3.3 protein induced by TSA, linking PC4 to H3 acetylation and LHR transcription. Depletion of H3.3 A/B in MCF7 cells impair chromatin accessibility and enrichment of Pol II and TFIIB at the LHR promoter and its activation, resulting in marked reduction of LHR gene expression. Together, these findings point to the critical role of PC4 and its association with acetylated H3.3 in TSA-induced LHR gene transcription.


Molecular and Cellular Endocrinology | 2010

PARTICIPATION OF SIGNALING PATHWAYS IN THE DEREPRESSION OF LUTEINIZING HORMONE RECEPTOR TRANSCRIPTION

Maria L. Dufau; Mingjuan Liao; Ying Zhang


The FASEB Journal | 2010

PC4 is a coactivator for basal and TSA-induced Luteinizing Hormone Receptor (LHR) transcription

Mingjuan Liao; Ying Zhang; Maria L. Dufau


The FASEB Journal | 2009

PC4 Coactivator Mediates Sp1-driven Luteinizing Hormone Receptor Transcription

Mingjuan Liao; Ying Zhang; Maria L. Dufau


The FASEB Journal | 2008

PKC alpha-Induced Derepression of the Human Luteinizing Hormone Receptor (LHR) through ERK-Mediated Sp1 Phosphorylation

Mingjuan Liao; Ying Zhang; Maria L. Dufau


The FASEB Journal | 2008

TRICHOSTATIN A INDUCED DEREPRESSION OF THE HUMAN LUTEINIZING HORMONE RECEPTOR GENE BY CELL-SPECIFIC PHOSPHATASE RELEASE FROM THE PROMOTER

Ying Zhang; Mingjuan Liao; Maria L. Dufau

Collaboration


Dive into the Mingjuan Liao's collaboration.

Top Co-Authors

Avatar

Maria L. Dufau

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ying Zhang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Raghuveer Kavarthapu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jung-Hoon Kang

Catholic University of Korea

View shared research outputs
Researchain Logo
Decentralizing Knowledge