Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mingliang Fang is active.

Publication


Featured researches published by Mingliang Fang.


Analytical Chemistry | 2015

Thermal Degradation of Small Molecules: A Global Metabolomic Investigation

Mingliang Fang; Julijana Ivanisevic; H. Paul Benton; Caroline H. Johnson; Gary J. Patti; Linh Hoang; Winnie Uritboonthai; Michael E. Kurczy; Gary Siuzdak

Thermal processes are widely used in small molecule chemical analysis and metabolomics for derivatization, vaporization, chromatography, and ionization, especially in gas chromatography mass spectrometry (GC/MS). In this study the effect of heating was examined on a set of 64 small molecule standards and, separately, on human plasma metabolite extracts. The samples, either derivatized or underivatized, were heated at three different temperatures (60, 100, and 250 °C) at different exposure times (30 s, 60 s, and 300 s). All the samples were analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry (LC/MS) and the data processed by XCMS Online (xcmsonline.scripps.edu). The results showed that heating at an elevated temperature of 100 °C had an appreciable effect on both the underivatized and derivatized molecules, and heating at 250 °C created substantial changes in the profile. For example, over 40% of the molecular peaks were altered in the plasma metabolite analysis after heating (250 °C, 300s) with a significant formation of degradation and transformation products. The analysis of 64 small molecule standards validated the temperature-induced changes observed on the plasma metabolites, where most of the small molecules degraded at elevated temperatures even after minimal exposure times (30 s). For example, tri- and diorganophosphates (e.g., adenosine triphosphate and adenosine diphosphate) were readily degraded into a mono-organophosphate (e.g., adenosine monophosphate) during heating. Nucleosides and nucleotides (e.g., inosine and inosine monophosphate) were also found to be transformed into purine derivatives (e.g., hypoxanthine). A newly formed transformation product, oleoyl ethyl amide, was identified in both the underivatized and derivatized forms of the plasma extracts and small molecule standard mixture, and was likely generated from oleic acid. Overall these analyses show that small molecules and metabolites undergo significant time-sensitive alterations when exposed to elevated temperatures, especially those conditions that mimic sample preparation and analysis in GC/MS experiments.


Aging (Albany NY) | 2016

Metabolic drift in the aging brain

Julijana Ivanisevic; Kelly L. Stauch; Michael Petrascheck; H. Paul Benton; Adrian A. Epstein; Mingliang Fang; Santhi Gorantla; Minerva Tran; Linh Hoang; Michael E. Kurczy; Michael D. Boska; Howard E. Gendelman; Howard S. Fox; Gary Siuzdak

Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energy metabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication.


Philosophical Transactions of the Royal Society A | 2016

Quantitative metabolomics of photoreceptor degeneration and the effects of stem cell-derived retinal pigment epithelium transplantation

Junhua Wang; Peter D Westenskow; Mingliang Fang; Martin Friedlander; Gary Siuzdak

Photoreceptor degeneration is characteristic of vision-threatening diseases including age-related macular degeneration. Photoreceptors are metabolically demanding cells in the retina, but specific details about their metabolic behaviours are unresolved. The quantitative metabolomics of retinal degeneration could provide valuable insights and inform future therapies. Here, we determined the metabolomic ‘fingerprint’ of healthy and dystrophic retinas in rat models using optimized metabolite extraction techniques. A number of classes of metabolites were consistently dysregulated during degeneration: vitamin A analogues, fatty acid amides, long-chain polyunsaturated fatty acids, acyl carnitines and several phospholipid species. For the first time, a distinct temporal trend of several important metabolites including DHA (4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid), all-trans-retinal and its toxic end-product N-retinyl-N-retinylidene-ethanolamine were observed between healthy and dystrophic retinas. In this study, metabolomics was further used to determine the temporal effects of the therapeutic intervention of grafting stem cell-derived retinal pigment epithelium (RPE) in dystrophic retinas, which significantly prevented photoreceptor atrophy in our previous studies. The result revealed that lipid levels such as phosphatidylethanolamine in eyes were restored in those animals receiving the RPE grafts. In conclusion, this study provides insight into the metabolomics of retinal degeneration, and further understanding of the efficacy of RPE transplantation. This article is part of the themed issue ‘Quantitative mass spectrometry’.


Bioinformatics | 2015

Determining Conserved Metabolic Biomarkers from a Million Database Queries

Michael E. Kurczy; Julijana Ivanisevic; Caroline H. Johnson; Winnie Uritboonthai; Linh Hoang; Mingliang Fang; Matthew Hicks; Anthony Aldebot; Duane Rinehart; Lisa Mellander; Ralf Tautenhahn; Gary J. Patti; Mary E. Spilker; H. Paul Benton; Gary Siuzdak

MOTIVATION Metabolite databases provide a unique window into metabolome research allowing the most commonly searched biomarkers to be catalogued. Omic scale metabolite profiling, or metabolomics, is finding increased utility in biomarker discovery largely driven by improvements in analytical technologies and the concurrent developments in bioinformatics. However, the successful translation of biomarkers into clinical or biologically relevant indicators is limited. RESULTS With the aim of improving the discovery of translatable metabolite biomarkers, we present search analytics for over one million METLIN metabolite database queries. The most common metabolites found in METLIN were cross-correlated against XCMS Online, the widely used cloud-based data processing and pathway analysis platform. Analysis of the METLIN and XCMS common metabolite data has two primary implications: these metabolites, might indicate a conserved metabolic response to stressors and, this data may be used to gauge the relative uniqueness of potential biomarkers. AVAILABILITY AND IMPLEMENTATION METLIN can be accessed by logging on to: https://metlin.scripps.edu CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Chemistry & Biology | 2018

Metabolomics Reveals that Dietary Xenoestrogens Alter Cellular Metabolism Induced by Palbociclib/Letrozole Combination Cancer Therapy

Benedikt Warth; Philipp Raffeiner; Ana Granados; Tao Huan; Mingliang Fang; Erica M. Forsberg; H. Paul Benton; Laura H. Goetz; Caroline H. Johnson; Gary Siuzdak

Recently, the palbociclib/letrozole combination therapy was granted accelerated US FDA approval for the treatment of estrogen receptor (ER)-positive breast cancer. Since the underlying metabolic effects of these drugs are yet unknown, we investigated their synergism at the metabolome level in MCF-7 cells. As xenoestrogens interact with the ER, we additionally aimed at deciphering the impact of the phytoestrogen genistein and the estrogenic mycotoxin zearalenone. A global metabolomics approach was applied to unravel metabolite and pathway modifications. The results clearly showed that the combined effects of palbociclib and letrozole on cellular metabolism were far more pronounced than that of each agent alone and potently influenced by xenoestrogens. This behavior was confirmed in proliferation experiments and functional assays. Specifically, amino acids and central carbon metabolites were attenuated, while higher abundances were observed for fatty acids and most nucleic acid-related metabolites. Interestingly, exposure to model xenoestrogens appeared to counteract these effects.


Nature Chemical Biology | 2017

Metabolomics-based discovery of a metabolite that enhances oligodendrocyte maturation

Brittney A. Beyer; Mingliang Fang; Benjamin Sadrian; J. Rafael Montenegro-Burke; Warren C. Plaisted; Bernard P. Kok; Enrique Saez; Toru Kondo; Gary Siuzdak; Luke L. Lairson

Endogenous metabolites play essential roles in the regulation of cellular identity and activity. Here we have investigated the process of oligodendrocyte precursor cell (OPC) differentiation, a process that becomes limiting during progressive stages of demyelinating diseases, including multiple sclerosis, using mass-spectrometry-based metabolomics. Levels of taurine, an aminosulfonic acid possessing pleotropic biological activities and broad tissue distribution properties, were found to be significantly elevated (∼20-fold) during the course of oligodendrocyte differentiation and maturation. When added exogenously at physiologically relevant concentrations, taurine was found to dramatically enhance the processes of drug-induced in vitro OPC differentiation and maturation. Mechanism of action studies suggest that the oligodendrocyte-differentiation-enhancing activities of taurine are driven primarily by its ability to directly increase available serine pools, which serve as the initial building block required for the synthesis of the glycosphingolipid components of myelin that define the functional oligodendrocyte cell state.


Molecular Neurobiology | 2018

Nanoformulated Antiretroviral Therapy Attenuates Brain Metabolic Oxidative Stress

J. Rafael Montenegro-Burke; Christopher Woldstad; Mingliang Fang; Aditya N. Bade; JoEllyn McMillan; Benson Edagwa; Michael D. Boska; Howard E. Gendelman; Gary Siuzdak

Antiretroviral therapy (ART) restricts human immunodeficiency virus type one (HIV-1) replication and by so doing, improves the quality and longevity of life for infected people. Nonetheless, treatment can also lead to adverse clinical outcomes such as drug resistance and systemic adverse events. Both could be affected by long-acting slow effective release ART. Indeed, maintenance of sustained plasma drug levels, for weeks or months, after a single high-level dosing, could improve regimen adherence but, at the same time, affect systemic toxicities. Of these, the most troubling are those that affect the central nervous system (CNS). To address this, dolutegravir (Tivicay, DTG), a potent and durable HIV integrase inhibitor used effectively in combination ART was tested. Rodents were administered parenteral 45-mg/kg doses. DTG-associated changes in CNS homeostasis were assessed by measuring brain metabolic activities. After antiretroviral treatment, brain subregions were dissected and screened by mass spectrometry-based metabolomics. Metabolic drug-related dysregulation of energy and oxidative stress were readily observed within the cerebellum and frontal cortex following native drug administrations. Each was associated with alterations in neural homeostasis and depleted canonical oxidation protection pools that included glutathione and ascorbic acid. Surprisingly, the oxidative stress-related metabolites were completely attenuated when DTG was administered as nanoformulations. These data demonstrate the importance of formulation design in control of DTG or perhaps other antiretroviral drug-associated CNS events.


bioRxiv | 2017

Dietary xenoestrogens significantly alter cellular metabolism induced by palbociclib/letrozole combination cancer therapy

Benedikt Warth; Ana Granados; Tao Huan; Mingliang Fang; Erica M. Forsberg; H. Paul Benton; Laura H. Goetz; Caroline H. Johnson; Gary Siuzdak

Highlights Synergism of combined palbociclib/letrozole chemotherapy was examined by global metabolomics Combination therapy led to more pronounced effects on the MCF-7 metabolome than single agents Dietary phyto- and mycoestrogens significantly affected the metabolic and anti-oncogenic response of the drugs Implications of these bio-active chemicals on therapeutic success in breast cancer patients appear plausible In Brief Warth et al. used innovative global metabolomics and pathway prediction technology to describe the metabolic effects of the combined palbociclib/letrozole breast cancer therapy. Moreover, the role of dietary xenoestrogens on this treatment was examined by metabolite data, proliferation experiments, and functional assays. Summary Recently, the palbociclib/letrozole combination therapy was granted accelerated FDA approval for the treatment of estrogen receptor (ER) positive breast cancer. Since the underlying metabolic effects of these drugs are yet unknown, we investigated their synergism at the metabolome level in MCF-7 cells. As xenoestrogens interact with the ER, we additionally aimed at deciphering the impact of the phytoestrogen genistein, and the estrogenic mycotoxin zearalenone on this treatment. A global metabolomics approach was applied to unravel metabolite and pathway modifications. The results clearly showed that the combined effects of palbociclib and letrozole on cellular metabolism were far more pronounced than that of each agent alone and potently influenced by xenoestrogens. This behavior was confirmed in proliferation experiments and functional assays. Specifically, amino acids and central carbon metabolites were attenuated while higher abundances were observed for fatty acids and most nucleic acid related metabolites. Interestingly, exposure to model xenoestrogens appeared to partially counteract these effects.


Journal of the American Society for Mass Spectrometry | 2017

Staying Alive: Measuring Intact Viable Microbes with Electrospray Ionization Mass Spectrometry

Erica M. Forsberg; Mingliang Fang; Gary Siuzdak

AbstractMass spectrometry has traditionally been the technology of choice for small molecule analysis, making significant inroads into metabolism, clinical diagnostics, and pharmacodynamics since the 1960s. In the mid-1980s, with the discovery of electrospray ionization (ESI) for biomolecule analysis, a new door opened for applications beyond small molecules. Initially, proteins were widely examined, followed by oligonucleotides and other nonvolatile molecules. Then in 1991, three intriguing studies reported using mass spectrometry to examine noncovalent protein complexes, results that have been expanded on for the last 25 years. Those experiments also raised the questions: How soft is ESI, and can it be used to examine even more complex interactions? Our lab addressed these questions with the analyses of viruses, which were initially tested for viability following electrospray ionization and their passage through a quadrupole mass analyzer by placing them on an active medium that would allow them to propagate. This observation has been replicated on multiple different systems, including experiments on an even bigger microbe, a spore. The question of analysis was also addressed in the early 2000s with charge detection mass spectrometry. This unique technology could simultaneously measure mass-to-charge and charge, allowing for the direct determination of the mass of a virus. More recent experiments on spores and enveloped viruses have given us insight into the range of mass spectrometry’s capabilities (reaching 100 trillion Da), beginning to answer fundamental questions regarding the complexity of these organisms beyond proteins and genes, and how small molecules are integral to these supramolecular living structures. Graphical Abstractᅟ


Molecular metabolism | 2018

Intestinal bitter taste receptor activation alters hormone secretion and imparts metabolic benefits

Bernard P. Kok; Andrea Galmozzi; Nicole K. Littlejohn; Verena Albert; Cristina Godio; Woojoo Kim; Sean M. Kim; Jeffrey S. Bland; Neile Grayson; Mingliang Fang; Wolfgang Meyerhof; Gary Siuzdak; Supriya Srinivasan; Maik Behrens; Enrique Saez

Objectives Extracts of the hops plant have been shown to reduce weight and insulin resistance in rodents and humans, but elucidation of the mechanisms responsible for these benefits has been hindered by the use of heterogeneous hops-derived mixtures. Because hop extracts are used as flavoring agents for their bitter properties, we hypothesized that bitter taste receptors (Tas2rs) could be mediating their beneficial effects in metabolic disease. Studies have shown that exposure of cultured enteroendocrine cells to bitter tastants can stimulate release of hormones, including glucagon-like peptide 1 (GLP-1). These findings have led to the suggestion that activation of Tas2rs may be of benefit in diabetes, but this tenet has not been tested. Here, we have assessed the ability of a pure derivative of a hops isohumulone with anti-diabetic properties, KDT501, to signal through Tas2rs. We have further used this compound as a tool to systematically assess the impact of bitter taste receptor activation in obesity-diabetes. Methods KDT501 was tested in a panel of bitter taste receptor signaling assays. Diet-induced obese mice (DIO) were dosed orally with KDT501 and acute effects on glucose homeostasis determined. A wide range of metabolic parameters were evaluated in DIO mice chronically treated with KDT501 to establish the full impact of activating gut bitter taste signaling. Results We show that KDT501 signals through Tas2r108, one of 35 mouse Tas2rs. In DIO mice, acute treatment stimulated GLP-1 secretion and enhanced glucose tolerance. Chronic treatment caused weight and fat mass loss, increased energy expenditure, enhanced glucose tolerance and insulin sensitivity, normalized plasma lipids, and induced broad suppression of inflammatory markers. Chronic KDT501 treatment altered enteroendocrine hormone levels and bile acid homeostasis and stimulated sustained GLP-1 release. Combined treatment with a dipeptidyl peptidase IV inhibitor amplified the incretin-based benefits of this pure isohumulone. Conclusions Activation of Tas2r108 in the gut results in a remodeling of enteroendocrine hormone release and bile acid metabolism that ameliorates multiple features of metabolic syndrome. Targeting extraoral bitter taste receptors may be useful in metabolic disease.

Collaboration


Dive into the Mingliang Fang's collaboration.

Top Co-Authors

Avatar

Gary Siuzdak

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Paul Benton

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Erica M. Forsberg

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Linh Hoang

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Tao Huan

University of Alberta

View shared research outputs
Top Co-Authors

Avatar

Ana Granados

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Duane Rinehart

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge