Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Minglin Lang is active.

Publication


Featured researches published by Minglin Lang.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Multicopper oxidase-1 is a ferroxidase essential for iron homeostasis in Drosophila melanogaster

Minglin Lang; Caroline L. Braun; Michael R. Kanost; Maureen J. Gorman

Multicopper ferroxidases catalyze the oxidation of ferrous iron to ferric iron. In yeast and algae, they participate in cellular uptake of iron; in mammals, they facilitate cellular efflux. The mechanisms of iron metabolism in insects are still poorly understood, and insect multicopper ferroxidases have not been identified. In this paper, we present evidence that Drosophila melanogaster multicopper oxidase-1 (MCO1) is a functional ferroxidase. We identified candidate iron-binding residues in the MCO1 sequence and found that purified recombinant MCO1 oxidizes ferrous iron. An association between MCO1 function and iron homeostasis was confirmed by two observations: RNAi-mediated knockdown of MCO1 resulted in decreased iron accumulation in midguts and whole insects, and weak knockdown increased the longevity of flies fed a toxic concentration of iron. Strong knockdown of MCO1 resulted in pupal lethality, indicating that MCO1 is an essential gene. Immunohistochemistry experiments demonstrated that MCO1 is located on the basal surfaces of the digestive system and Malpighian tubules. We propose that MCO1 oxidizes ferrous iron in the hemolymph and that the resulting ferric iron is bound by transferrin or melanotransferrin, leading to iron storage, iron withholding from pathogens, regulation of oxidative stress, and/or epithelial maturation. These proposed functions are distinct from those of other known ferroxidases. Given that MCO1 orthologues are present in all insect genomes analyzed to date, this discovery is an important step toward understanding iron metabolism in insects.


PLOS Genetics | 2012

Genetic Inhibition of Solute-Linked Carrier 39 Family Transporter 1 Ameliorates Aβ Pathology in a Drosophila Model of Alzheimer's Disease

Minglin Lang; Lei Wang; Qiangwang Fan; Guiran Xiao; Xiaoxi Wang; Yi Zhong; Bing Zhou

The aggregation or oligomerization of amyloid-β (Aβ) peptide is thought to be the primary causative event in the pathogenesis of Alzheimers disease (AD). Considerable in vitro evidence indicates that the aggregation/oligomerization of Aβ is promoted in the presence of Zn; however, the functional role of Zn in AD pathogenesis is still not well clarified in vivo. Zn is imported into the brain mainly through the solute-linked carrier (Slc) 39 family transporters. Using a genetically tractable Drosophila model, we found that the expression of dZip1, the orthologue of human Slc39 family transporter hZip1 in Drosophila, was altered in the brains of Aβ42-expressing flies, and Zn homeostasis could be modulated by forcible dZip1 expression changes. An array of phenotypes associated with Aβ expression could be modified by altering dZip1 expression. Importantly, Aβ42 fibril deposits as well as its SDS-soluble form were dramatically reduced upon dZip1 inhibition, resulting in less neurodegeneration, significantly improved cognitive performance, and prolonged lifespan of the Aβ42-transgenic flies. These findings suggest that zinc contributes significantly to the Aβ pathology, and manipulation of zinc transporters in AD brains may provide a novel therapeutic strategy.


Plant Cell Reports | 2009

The cation-efflux transporter BjCET2 mediates zinc and cadmium accumulation in Brassica juncea L. leaves

Jin Xu; Tuanyao Chai; Yuxiu Zhang; Minglin Lang; Lu Han

Brassica juncea L. is a Zn/Cd accumulator. To determine the physiological basis of its metal accumulation phenotype, the functional properties and role of the metal efflux transporter BjCET2 were investigated using transgenic technology. Heterologous expression of BjCET2 in the double mutant yeast strain Δzrc1Δcot1 enhanced the metal tolerance of the yeast strain and led to decrease in Zn or Cd accumulation. Detection of green fluorescence from green fluorescent protein (GFP) in the root tip of transgenic tobacco further revealed that BjCET2::GFP is localized at the plasma membrane. Semi-quantitative RT-PCR analysis showed that BjCET2 was most abundant in the root and was weakly expressed in the stem and leaves. The expression of BjCET2 was up-regulated by heavy metals. However, exposure to low temperature, salt and drought did not affect the expression of BjCET2. Overexpression of BjCET2 in transgenic B. juncea plants conferred heavy metal tolerance and increased Cd/Zn accumulation in the leaves. BjCET2-deficient B. juncea mediated by antisense RNA resulted in hypersensitivity to heavy metals and decreased Zn/Cd accumulation in the plants. These results suggest that the heavy metal efflux of BjCET2 plays important roles in the metal tolerance of B. juncea and in Zn/Cd accumulation in B. juncea.


Neurobiology of Aging | 2013

Inhibition of human high-affinity copper importer Ctr1 orthologous in the nervous system of Drosophila ameliorates Aβ42-induced Alzheimer's disease–like symptoms

Minglin Lang; Qiangwang Fan; Lei Wang; Yajun Zheng; Guiran Xiao; Xiaoxi Wang; Wei Wang; Yi Zhong; Bing Zhou

Disruption of copper homeostasis has been implicated in Alzheimers disease (AD) during the last 2 decades; however, whether copper is a friend or a foe is controversial. Within a genetically tractable Drosophila AD model, we manipulated the expression of human high-affinity copper importer orthologous in Drosophila to explore the in vivo roles of copper ions in the development of AD. We found that inhibition of Ctr1C expression by RNAi in Aβ-expressing flies significantly reduced copper accumulation in the brains of the flies as well as ameliorating neurodegeneration, enhancing climbing ability, and prolonging lifespan. Interestingly, Ctr1C inhibition led to a significant increase in higher-molecular-weight Aβ42 forms in brain lysates, whereas it was accompanied by a trend of decreased expression of amyloid-β degradation proteases (including NEP1-3 and IDE) with age and reduced Cu-Aβ interaction-induced oxidative stress in Ctr1C RNAi flies. Similar results were obtained from inhibiting another copper importer Ctr1B and overexpressing a copper exporter DmATP7 in the nervous system of AD flies. These results imply that copper may play a causative role in developing AD, as either Aβ oligomers or aggregates were less toxic in a reduced copper environment or one with less copper binding. Early manipulation of brain copper uptake can have a great effect on Aβ pathology.


PLOS ONE | 2012

Multicopper Oxidase-3 Is a Laccase Associated with the Peritrophic Matrix of Anopheles gambiae

Minglin Lang; Michael R. Kanost; Maureen J. Gorman

The multicopper oxidase (MCO) family of enzymes includes laccases, which oxidize a broad range of substrates including polyphenols and phenylendiamines; ferroxidases, which oxidize ferrous iron; and several other oxidases with specific substrates such as ascorbate, bilirubin or copper. The genome of Anopheles gambiae, a species of mosquito, encodes five putative multicopper oxidases. Of these five, only AgMCO2 has known enzymatic and physiological functions: it is a highly conserved laccase that functions in cuticle pigmentation and tanning by oxidizing dopamine and dopamine derivatives. AgMCO3 is a mosquito-specific gene that is expressed predominantly in adult midguts and Malpighian tubules. To determine its enzymatic function, we purified recombinant AgMCO3 and analyzed its activity. AgMCO3 oxidized hydroquinone (a p-diphenol), the five o-diphenols tested, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), and p-phenylenediamine, but not ferrous iron. The catalytic efficiencies of AgMCO3 were similar to those of cuticular laccases (MCO2 orthologs), except that AgMCO3 oxidized all of the phenolic substrates with similar efficiencies whereas the MCO2 isoforms were less efficient at oxidizing catechol or dopa. These results demonstrate that AgMCO3 can be classified as a laccase and suggest that AgMCO3 has a somewhat broader substrate specificity than MCO2 orthologs. In addition, we observed AgMCO3 immunoreactivity in the peritrophic matrix, which functions as a selective barrier between the blood meal and midgut epithelial cells, protecting the midgut from mechanical damage, pathogens, and toxic molecules. We propose that AgMCO3 may oxidize toxic molecules in the blood meal leading to detoxification or to cross-linking of the molecules to the peritrophic matrix, thus targeting them for excretion.


Journal of Experimental Botany | 2011

Functional characterization of BjCET3 and BjCET4, two new cation-efflux transporters from Brassica juncea L.

Minglin Lang; Mengyu Hao; Qiangwang Fan; Wei Wang; Shaojing Mo; Weicheng Zhao; Jie Zhou

Brassica juncea is promising for metal phytoremediation, but little is known about the functional role of most metal transporters in this plant. The functional characterization of two B. juncea cation-efflux family proteins BjCET3 and BjCET4 is reported here. The two proteins are closely related to each other in amino acid sequence, and are members of Group III of the cation-efflux transporters. Heterologous expression of BjCET3 and BjCET4 in yeast confirmed their functions in exporting Zn, and possibly Cd, Co, and Ni. Yeast transformed with BjCET4 showed higher metal resistance than did BjCET3 transformed. The two BjCET–GFP fusion proteins were localized to the plasma membrane in the roots when expressed in tobacco, and significantly enhanced the plants’ Cd tolerance ability. Under Cd stress, tobacco plants transformed with BjCET3 accumulated significant amounts of Cd in shoots, while maintaining similar shoot biomass production with vector-control subjects. Transformed BjCET4 tobacco plants showed significantly enhanced shoot biomass production with markedly decreased shoot Cd content. The two transporter genes have a lower basal transcript expression in B. juncea seedling tissues when grown in normal conditions than under metal-stress, however, their transcripts levels could be substantially increased by Zn, Cd, NaCl or PEG, suggesting that BjCET3 and BjCET4 may play roles in several stress conditions, roles which appear to be different from those of previous characterized cation-efflux transporters, for example, AtMTP1, BjCET2, and BjMTP1.


Insect Biochemistry and Molecular Biology | 2015

Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity

Zeyu Peng; Neal T. Dittmer; Minglin Lang; Lisa M. Brummett; Caroline L. Braun; Lawrence C. Davis; Michael R. Kanost; Maureen J. Gorman

Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surprising because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism.


Plant Molecular Biology Reporter | 2005

PCR-enriched cDNA pool method for cloning of gene homologues

Minglin Lang; Yuxiu Zhang; Ziqiu Guan; Tuanyao Chai

We have developed a PCR-enriched cDNA pooling method for enrichment of the complete 5′ ends of the target homology cDNA fragments with just 1 conserved region needed. By using reverse transcription and a few rounds of PCR amplification, a full-length cDNA population flanked by T7 and M13 primers was generated. Multiple complete 5′ ends of cDNA members of a gene family can subsequently be enriched via PCR with M13 and degenerate primer mix priming at the 5′ end and the conserved region, and they migrate as a single dense band when separated on an agarose gel. The enriched homologous cDNA fragments could be separated for subsequent cloning and sequencing. The main advantages of our method are its speediness, simplicity, and cost-effectiveness. The method has been successfully applied to the cloning of members of the cation-efflux family inBrassica juncea L. and the natural resistance-associated macrophage protein family inThlaspi caerulescens, which demonstrates that this novel approach permits rapid isolation of novel interspecific gene orthologues. It could also be easily adapted to highly specific cloning of gene homologues identified in target genomes.


Cloning & Transgenesis | 2013

Advances in the study of genetic enrichment of selenium in plants

Lu Guo; Minglin Lang; Raman Chandrasekar; Guiru Liu

Selenium (Se) is a micronutrient essential for human and animal health. Due to the unbalanced distribution of Se resources in the world, Se deficiency is regarded as a major human health problem. Insufficient ingestion of Se in human caused a series of disease including Keshan disease and Kashin-Becks disease. While some parts of the world was Se poisoning due to the Se ores on geological stratification or Se pollution. The using Se-enriched and/or hyperaccumulated green plants to treat these problems has acquired more and more attention worldwide from last decade. This paper describes current advances in the efforts of searching Se enriched plant genetic resources, clarifying the Se metabolism and accumulation mechanism in plants, and cloning key genes responsible for Se accumulation or hyper-accumulation and their transformation in plants.


Omics A Journal of Integrative Biology | 2017

Contribution of Genetic Polymorphisms and Haplotypes in DRD2, BDNF, and Opioid Receptors to Heroin Dependence and Endophenotypes Among the Han Chinese

Xuan Gao; Youxin Wang; Minglin Lang; Li Yuan; Albert Stuart Reece; Wei Wang

Heroin and drug dependence are major contributors to global health burden worldwide, but their underlying mechanisms remain elusive and may vary from population to population. Reward- and memory-related candidate genes dopamine D2 receptor (DRD2) and brain-derived neurotrophic factor (BDNF), as well as the opioid receptor genes (OPRM1, OPRD1, and OPRK1), have been implicated in drug dependence, but relatively little is known on their contributions to heroin dependence in populations worldwide. Hence, we evaluated the contributions of the above five candidate genes in heroin dependence and several important related endophenotypes (the onset age of heroin use and subjective response to first heroin use), at single single-nucleotide polymorphism as well as haplotype levels, in a Han Chinese population sample. We genotyped 546 unrelated and heroin-dependent subjects for the candidate genes noted, and 228 sex- and age-matched unrelated controls. The G allele of rs4654327 (OPRD1), DRD2 haplotype block CCGCCGTT (rs6277-rs1076560-rs2283265-rs2734833-rs2075652-rs1079596-rs4436578-rs11214607), and OPRD1 haplotypes TACG (rs6669447-rs2236857-rs508448-rs4654327), CG (rs508448-rs4654327), and TG (rs6669447-rs4654327) were significantly associated with heroin dependence phenotype. Homozygotes AA at rs6265 (BDNF), TT at rs16917234 (BDNF), and CC at rs508448 (OPRD1) also appeared as risk factors for the endophenotype earlier age of onset for heroin use. Two OPRM1 haplotypes, AG (rs1799971-rs1381376) and AT (rs1799971-rs3778151), were observed as potential protective factors. These emerging findings contribute to the literature on genetic biomarkers of drug dependence and related endophenotypes, and call for replication in independent population.

Collaboration


Dive into the Minglin Lang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tuanyao Chai

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei Wang

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Yuxiu Zhang

China University of Mining and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge