Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mingqiang Li is active.

Publication


Featured researches published by Mingqiang Li.


Biomaterials | 2014

Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer

Shixian Lv; Zhaohui Tang; Mingqiang Li; Jian Lin; Wantong Song; Huaiyu Liu; Yubin Huang; Yuanyuan Zhang; Xuesi Chen

Despite progress, combination therapy of different functional drugs to increase the efficiency of anticancer treatment still remains challenges. An amphiphilic methoxy poly(ethylene glycol)-b-poly(l-glutamic acid)-b-poly(l-lysine) triblock copolymer decorated with deoxycholate (mPEsG-b-PLG-b-PLL/DOCA) was synthesized and developed as a nanovehicle for the co-delivery of anticancer drugs: doxorubicin (DOX) and paclitaxel (PTX). The amphiphilic copolymer spontaneously self-assembled into micellar-type nanoparticles in aqueous solutions and the blank nanoparticles possessed excellent stability. Three different domains of the copolymer performed distinct functions: PEG outer corona provided prolonged circulation, middle biodegradable and hydrophilic PLG shell was designed for DOX loading through electrostatic interactions, and hydrophobic deoxycholate modified PLL served as the container for PTX. In vitro cytotoxicity assays against A549 human lung adenocarcinoma cell line demonstrated that the DOX + PTX co-delivered nanoparticles (Co-NPs) exhibited synergistic effect in inducing cancer cell apoptosis. Ex vivo DOX fluorescence imaging revealed that Co-NPs had highly efficient targeting and accumulation at the implanted site of A549 xenograft tumor in vivo. Co-NPs exhibited significantly higher antitumor efficiency in reducing tumor size compared to free drug combination or single drug-loaded nanoparticles, while no obvious side effects were observed during the treatment, indicating this co-delivery system with different functional antitumor drugs provides the clinical potential in cancer therapy.


Acta Biomaterialia | 2013

Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy.

Shixian Lv; Mingqiang Li; Zhaohui Tang; Wantong Song; Hai Sun; Huaiyu Liu; Xuesi Chen

An amphiphilic anionic copolymer, methoxy poly(ethylene glycol)-b-poly(l-glutamic acid-co-l-phenylalanine) (mPEG-b-P(Glu-co-Phe)), with three functionalized domains, was synthesized and used as a nanovehicle for cationic anticancer drug doxorubicin hydrochloride (DOX·HCl) delivery via electrostatic interactions for cancer treatment. The three domains displayed distinct functions: PEG block chain for prolonged circulation; poly(phenylalanine) domain for stabilizing the nanoparticle construct through hydrophobic/aromatic interactions; and the poly(glutamic acid) domain for providing electrostatic interactions with the cationic drug to be loaded. The copolymer could self-assemble into micellar-type nanoparticles, and DOX was successfully loaded into the interior of nanoparticles by simple mixing of DOX·HCl and the copolymer in the aqueous phase. DOX-loaded mPEG-b-P(Glu-co-Phe) nanoparticles (DOX-NP) had a superior drug-loading content (DLC) (21.7%), a high loading efficiency (almost 98%) and a pH-triggered release of DOX. The size of DOX-NP was ∼140 nm, as determined by dynamic light scattering measurements and transmission electron microscopy. In vitro assays showed that DOX-NP exhibited higher cell proliferation inhibition and higher cell uptake in A549 cell lines compared with free DOX·HCl. Maximum tolerated dose (MTD) studies showed that DOX-NP demonstrated an excellent safety profile with a significantly higher MTD (15 mg DOX kg(-1)) than that of free DOX·HCl (5 mg DOX kg(-1)). The in vivo studies on the subcutaneous non-small cell lung cancer (A549) xenograft nude mice model confirmed that DOX-NP showed significant antitumor activity and reduced side effects, and then enhanced tumor accumulation as a result of the prolonged circulation in blood and the enhanced permeation and retention effect, compared with free DOX, indicating its great potential for cancer therapy.


ACS Applied Materials & Interfaces | 2013

Nanoscaled Poly(l-glutamic acid)/Doxorubicin-Amphiphile Complex as pH-responsive Drug Delivery System for Effective Treatment of Nonsmall Cell Lung Cancer

Mingqiang Li; Wantong Song; Zhaohui Tang; Shixian Lv; Lin Lin; Hai Sun; Quanshun Li; Yan Yang; Hua Hong; Xuesi Chen

Nonsmall cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. Herein, we develop a polypeptide-based block ionomer complex formed by anionic methoxy poly(ethylene glycol)-b-poly(L-glutamic acid) (mPEG-b-PLG) and cationic anticancer drug doxorubicin hydrochloride (DOX·HCl) for NSCLC treatment. This complex spontaneously self-assembled into spherical nanoparticles (NPs) in aqueous solutions via electrostatic interaction and hydrophobic stack, with a high loading efficiency (almost 100%) and negative surface charge. DOX·HCl release from the drug-loaded micellar nanoparticles (mPEG-b-PLG-DOX·HCl) was slow at physiological pH, but obviously increased at the acidic pH mimicking the endosomal/lysosomal environment. In vitro cytotoxicity and hemolysis assays demonstrated that the block copolypeptide was cytocompatible and hemocompatible, and the presence of copolypeptide carrier could reduce the hemolysis ratio of DOX·HCl significantly. Cellular uptake and cytotoxicity studies suggested that mPEG-b-PLG-DOX·HCl was taken up by A549 cells via endocytosis, with a slightly slower cellular internalization and lower cytotoxicity compared with free DOX·HCl. The pharmacokinetics study in rats showed that DOX·HCl-loaded micellar NPs significantly prolonged the blood circulation time. Moreover, mPEG-b-PLG-DOX·HCl exhibited enhanced therapeutic efficacy, increased apoptosis in tumor tissues, and reduced systemic toxicity in nude mice bearing A549 lung cancer xenograft compared with free DOX·HCl, which were further confirmed by histological and immunohistochemical analyses. The results demonstrated that mPEG-b-PLG was a promising vector to deliver DOX·HCl into tumors and achieve improved pharmacokinetics, biodistribution and efficacy of DOX·HCl with reduced toxicity. These features strongly supported the interest of developing mPEG-b-PLG-DOX·HCl as a valid therapeutic modality in the therapy of human NSCLC and other solid tumors.


Polymer Chemistry | 2013

pH and reduction dual-responsive nanogel cross-linked by quaternization reaction for enhanced cellular internalization and intracellular drug delivery

Mingqiang Li; Zhaohui Tang; Hai Sun; Jianxun Ding; Wantong Song; Xuesi Chen

A novel pH and reduction dual-responsive nanogel with improved cellular internalization was prepared through atom transfer radical polymerization and subsequent quaternization reaction. Doxorubicin (DOX), a model anticancer drug, was loaded into the nanogel via dispersion. The DOX-loaded nanogel presented a stable core-cross-linked structure under physiological conditions, but quickly released its payload in an acidic (pH 6.8) and reductive (10.0 mM glutathione) environment. Confocal fluorescence microscopy and fluorescence flow cytometry revealed that the DOX-loaded nanogel could deliver DOX into the cytoplasm and nucleus of cells, more efficiently than that of free DOX. The improved cellular internalization was more significant under acidic and reductive conditions, which was analogous to the pH and reductive conditions in endosomes and cytoplasm. In vitro cytotoxicity studies demonstrated that the pH and reduction responsive DOX-loaded nanogel could inhibit cellular proliferation more efficiently than free DOX. This dual-bioresponsive nanogel with quaternary ammonium salt group has appeared to be highly promising in the further development of intracellular drug transporters.


Biomaterials | 2014

Anti-tumor efficacy of c(RGDfK)-decorated polypeptide-based micelles co-loaded with docetaxel and cisplatin

Wantong Song; Zhaohui Tang; Dawei Zhang; Ying Zhang; Haiyang Yu; Mingqiang Li; Shixian Lv; Hai Sun; Mingxiao Deng; Xuesi Chen

There are two important obstacles for the currently applied anti-cancer drug delivery systems. One is the conflict between long-circulation and cellular uptake while the other one is the achievement of ideal anti-cancer efficacy. To solve these problems, we designed a polypeptide-based micelle system that combined the advantages of receptor mediated endocytosis and multi-drug delivery. Firstly, an amphiphilic PLG-g-Ve/PEG graft copolymer was prepared by grafting α-tocopherol (Ve) and polyethylene glycol (PEG) to poly(l-glutamic acid) (PLG). Then docetaxel (DTX) and cisplatin (CDDP) were co-loaded into the PLG-g-Ve/PEG micelles via hydrophobic and chelation effect. After that, the surface of the dual-drug-loaded micelles was decorated with an αvβ3 integrin targeting peptide c(RGDfK). The targeted dual-drug-loaded micelles showed synergistic cytotoxicity and enhanced internalization rate in mouse melanoma (B16F1) cells. In vivo tests demonstrated that remarkable long circulation, anti-tumor and anti-metastasis efficacy could be achieved using this drug delivery system. This work revealed a strategy for the design and preparation of anti-cancer drug delivery systems with reduced side effect, enhanced anti-tumor and anti-metastasis efficacy.


Macromolecular Bioscience | 2012

Methoxypoly(ethylene glycol)-block-Poly(L-glutamic acid)-Loaded Cisplatin and a Combination With iRGD for the Treatment of Non-Small-Cell Lung Cancers

Wantong Song; Mingqiang Li; Zhaohui Tang; Quanshun Li; Yan Yang; Huaiyu Liu; Taicheng Duan; Hua Hong; Xuesi Chen

CDDP is loaded into methoxypoly(ethylene glycol)-block-poly(L-glutamic acid) (mPEG-b-PLG), and a combination with iRGD is applied for NSCLC chemotherapy. The CDDP-loaded micelles show sustained cisplatin release in PBS, dose- and time-dependent inhibition to HeLa and A549 cell proliferation, and no apparent hemolysis activities. In in vivo studies using subcutaneous NSCLC xenograft models (A549), both free CDDP and CDDP-loaded micelles show an evident anti-tumor effect. However, the toxicity of CDDP is significantly reduced in the cases of CDDP-loaded micelles and co-administration with iRGD, and the survival time is prolonged by over 30%. Therefore, mPEG-b-PLG-loaded cisplatin and the combination with iRGD provides a promising new therapy for NSCLC.


Acta Biomaterialia | 2014

Polypeptide-based combination of paclitaxel and cisplatin for enhanced chemotherapy efficacy and reduced side-effects.

Wantong Song; Zhaohui Tang; Mingqiang Li; Shixian Lv; Hai Sun; Mingxiao Deng; Huaiyu Liu; Xuesi Chen

A novel methoxy poly(ethylene glycol)-b-poly(l-glutamic acid)-b-poly(l-phenylalanine) (mPEG-b-P(Glu)-b-P(Phe)) triblock copolymer was prepared and explored as a micelle carrier for the co-delivery of paclitaxel (PTX) and cisplatin (cis-diamminedichlo-platinum, CDDP). PTX and CDDP were loaded inside the hydrophobic P(Phe) inner core and chelated to the middle P(Glu) shell, respectively, while mPEG provided the outer corona for prolonged circulation. An in vitro release profile of the PTX+CDDP-loaded micelles showed that the CDDP chelation cross-link prevented an initial burst release of PTX. The PTX+CDDP-loaded micelles exhibited a high synergism effect in the inhibition of A549 human lung cancer cell line proliferation over 72 h incubation. For the in vivo treatment of xenograft human lung tumor, the PTX+CDDP-loaded micelles displayed an obvious tumor inhibiting effect with a 83.1% tumor suppression rate (TSR%), which was significantly higher than that of a free drug combination or micelles with a single drug. In addition, more importantly, the enhanced anti-tumor efficacy of the PTX+CDDP-loaded micelles came with reduced side-effects. No obvious body weight loss occurred during the treatment of A549 tumor-bearing mice with the PTX+CDDP-loaded micelles. Thus, the polypeptide-based combination of PTX and CDDP may provide useful guidance for effective and safe cancer chemotherapy.


Macromolecular Bioscience | 2013

Co-delivery of 10-Hydroxycamptothecin with Doxorubicin Conjugated Prodrugs for Enhanced Anticancer Efficacy

Yu Zhang; Chunsheng Xiao; Mingqiang Li; Jie Chen; Jianxun Ding; Chaoliang He; Xiuli Zhuang; Xuesi Chen

Well-defined amphiphilic linear-dendritic prodrugs (MPEG-b-PAMAM-DOX) are synthesized by conjugating doxorubicin (DOX), to MPEG-b-PAMAM through the acid-labile hydrazone bond. The amphiphilic prodrugs form self-assembled nanoparticles in deionized water and encapsulate the hydrophobic anticancer drug 10-hydroxycamptothecin (HCPT) with a high drug loading efficiency. Studies on drug release and cellular uptake of the co-delivery system reveal that both drugs are released in a pH-dependent manner and effectively taken up by MCF-7 cells. In vitro methyl thiazolyl tetrazolium (MTT) assays and drug-induced apoptosis tests demonstrate the HCPT-loaded nanoparticles suppress cancer cell growth more efficiently than the MPEG-b-PAMAM-DOX prodrugs, free HCPT, and physical mixtures of MPEG-b-PAMAM-DOX and HCPT at equivalent DOX or HCPT doses.


Acta Biomaterialia | 2015

Targeted delivery of cisplatin by LHRH-peptide conjugated dextran nanoparticles suppresses breast cancer growth and metastasis

Mingqiang Li; Zhaohui Tang; Yu Zhang; Shixian Lv; Quanshun Li; Xuesi Chen

The metastasis of breast cancer is the leading cause of cancer death in women. In this work, an attempt to simultaneously inhibit the primary tumor growth and organ-specific metastasis by the cisplatin-loaded LHRH-modified dextran nanoparticles (Dex-SA-CDDP-LHRH) was performed in the 4T1 orthotopic mammary tumor metastasis model. With the rationally designed conjugation site of the LHRH ligand, the Dex-SA-CDDP-LHRH nanoparticles maintained the targeting function of LHRH and specifically bound to the LHRH-receptors overexpressed on the surface of 4T1 breast cancer cells. Therefore, the Dex-SA-CDDP-LHRH nanoparticles exhibited improved cellular uptake and promoted cytotoxicity, when compared with the non-targeted Dex-SA-CDDP nanoparticles. Moreover, both the non-targeted and targeted nanoparticles significantly decreased the systemic toxicity of CDDP and increased the maximum tolerated dose of CDDP from 4 to 30mgkg(-1). Importantly, Dex-SA-CDDP-LHRH markedly enhanced the accumulation of CDDP in the injected primary tumor and metastasis-containing organs, and meanwhile significantly reduced the nephrotoxicity of CDDP. Dose-dependent therapeutic effects further demonstrated that the CDDP-loaded LHRH-decorated polysaccharide nanoparticles significantly enhanced the antitumor and antimetastasis efficacy, as compared to the non-targeted nanoparticles. These results suggest that Dex-SA-CDDP-LHRH nanoparticles show great potential for targeted chemotherapy of metastatic breast cancer.


Chemical Reviews | 2017

CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery

Hong-Xia Wang; Mingqiang Li; Ciaran M. Lee; Syandan Chakraborty; Hae-Won Kim; Gang Bao; Kam W. Leong

Genome editing offers promising solutions to genetic disorders by editing DNA sequences or modulating gene expression. The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) technology can be used to edit single or multiple genes in a wide variety of cell types and organisms in vitro and in vivo. Herein, we review the rapidly developing CRISPR/Cas9-based technologies for disease modeling and gene correction and recent progress toward Cas9/guide RNA (gRNA) delivery based on viral and nonviral vectors. We discuss the relative merits of delivering the genome editing elements in the form of DNA, mRNA, or protein, and the opportunities of combining viral delivery of a transgene encoding Cas9 with nonviral delivery of gRNA. We highlight the lessons learned from nonviral gene delivery in the past three decades and consider their applicability for CRISPR/Cas9 delivery. We also include a discussion of bioinformatics tools for gRNA design and chemical modifications of gRNA. Finally, we consider the extracellular and intracellular barriers to nonviral CRISPR/Cas9 delivery and propose strategies that may overcome these barriers to realize the clinical potential of CRISPR/Cas9-based genome editing.

Collaboration


Dive into the Mingqiang Li's collaboration.

Top Co-Authors

Avatar

Xuesi Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhaohui Tang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wantong Song

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shixian Lv

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianxun Ding

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yu Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hai Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiuli Zhuang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge