Mingquan Ding
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mingquan Ding.
Plant Cell and Environment | 2010
Jian Sun; Meijuan Wang; Mingquan Ding; Shurong Deng; Meiqin Liu; Cunfu Lu; Xiaoyang Zhou; Xin Shen; Xiaojiang Zheng; Zengkai Zhang; Jin Song; Zanmin Hu; Yue Xu; Shaoliang Chen
Using confocal microscopy, X-ray microanalysis and the scanning ion-selective electrode technique, we investigated the signalling of H(2)O(2), cytosolic Ca(2+) ([Ca(2+)](cyt)) and the PM H(+)-coupled transport system in K(+)/Na(+) homeostasis control in NaCl-stressed calluses of Populus euphratica. An obvious Na(+)/H(+) antiport was seen in salinized cells; however, NaCl stress caused a net K(+) efflux, because of the salt-induced membrane depolarization. H(2)O(2) levels, regulated upwards by salinity, contributed to ionic homeostasis, because H(2)O(2) restrictions by DPI or DMTU caused enhanced K(+) efflux and decreased Na(+)/H(+) antiport activity. NaCl induced a net Ca(2+) influx and a subsequent rise of [Ca(2+)](cyt), which is involved in H(2)O(2)-mediated K(+)/Na(+) homeostasis in salinized P. euphratica cells. When callus cells were pretreated with inhibitors of the Na(+)/H(+) antiport system, the NaCl-induced elevation of H(2)O(2) and [Ca(2+)](cyt) was correspondingly restricted, leading to a greater K(+) efflux and a more pronounced reduction in Na(+)/H(+) antiport activity. Results suggest that the PM H(+)-coupled transport system mediates H(+) translocation and triggers the stress signalling of H(2)O(2) and Ca(2+), which results in a K(+)/Na(+) homeostasis via mediations of K(+) channels and the Na(+)/H(+) antiport system in the PM of NaCl-stressed cells. Accordingly, a salt stress signalling pathway of P. euphratica cells is proposed.
PLOS ONE | 2012
Jian Sun; Xuan Zhang; Shurong Deng; Chunlan Zhang; Meijuan Wang; Mingquan Ding; Rui Zhao; Xin Shen; Xiaoyang Zhou; Cunfu Lu; Shaoliang Chen
Extracellular ATP (eATP) has been implicated in mediating plant growth and antioxidant defense; however, it is largely unknown whether eATP might mediate salinity tolerance. We used confocal microscopy, a non-invasive vibrating ion-selective microelectrode, and quantitative real time PCR analysis to evaluate the physiological significance of eATP in the salt resistance of cell cultures derived from a salt-tolerant woody species, Populus euphratica. Application of NaCl (200 mM) shock induced a transient elevation in [eATP]. We investigated the effects of eATP by blocking P2 receptors with suramin and PPADS and applying an ATP trap system of hexokinase-glucose. We found that eATP regulated a wide range of cellular processes required for salt adaptation, including vacuolar Na+ compartmentation, Na+/H+ exchange across the plasma membrane (PM), K+ homeostasis, reactive oxygen species regulation, and salt-responsive expression of genes related to K+/Na+ homeostasis and PM repair. Furthermore, we found that the eATP signaling was mediated by H2O2 and cytosolic Ca2+ released in response to high salt in P. euphratica cells. We concluded that salt-induced eATP was sensed by purinoceptors in the PM, and this led to the induction of downstream signals, like H2O2 and cytosolic Ca2+, which are required for the up-regulation of genes linked to K+/Na+ homeostasis and PM repair. Consequently, the viability of P. euphratica cells was maintained during a prolonged period of salt stress.
Journal of Experimental Botany | 2013
Yansha Han; Wei Wang; Jian Sun; Mingquan Ding; Rui Zhao; Shurong Deng; Feifei Wang; Yue Hu; Yang Wang; Yanjun Lu; Liping Du; Zanmin Hu; Heike Diekmann; Xin Shen; Andrea Polle; Shaoliang Chen
Populus euphratica is a salt-tolerant tree species that develops leaf succulence after a prolonged period of salinity stress. In the present study, a putative xyloglucan endotransglucosylase/hydrolase gene (PeXTH) from P. euphratica was isolated and transferred to tobacco plants. PeXTH localized exclusively to the endoplasmic reticulum and cell wall. Plants overexpressing PeXTH were more salt tolerant than wild-type tobacco with respect to root and leaf growth, and survival. The increased capacity for salt tolerance was due mainly to the anatomical and physiological alterations caused by PeXTH overexpression. Compared with the wild type, PeXTH-transgenic plants contained 36% higher water content per unit area and 39% higher ratio of fresh weight to dry weight, a hallmark of leaf succulence. However, the increased water storage in the leaves in PeXTH-transgenic plants was not accompanied by greater leaf thickness but was due to highly packed palisade parenchyma cells and fewer intercellular air spaces between mesophyll cells. In addition to the salt dilution effect in response to NaCl, these anatomical changes increased leaf water-retaining capacity, which lowered the increase of salt concentration in the succulent tissues and mesophyll cells. Moreover, the increased number of mesophyll cells reduced the intercellular air space, which improved carbon economy and resulted in a 47–78% greater net photosynthesis under control and salt treatments (100–150mM NaCl). Taken together, the results indicate that PeXTH overexpression enhanced salt tolerance by the development of succulent leaves in tobacco plants without swelling.
Plant Physiology | 2015
Shurong Deng; Jian Sun; Rui Zhao; Mingquan Ding; Yinan Zhang; Yuanling Sun; Wei Wang; Yeqing Tan; Dandan Liu; Xujun Ma; Peichen Hou; Meijuan Wang; Cunfu Lu; Xin Shen; Shaoliang Chen
Overexpression of a poplar apyrase gene enhances vesicular trafficking and cold tolerance in Arabidopsis. Apyrase and extracellular ATP play crucial roles in mediating plant growth and defense responses. In the cold-tolerant poplar, Populus euphratica, low temperatures up-regulate APYRASE2 (PeAPY2) expression in callus cells. We investigated the biochemical characteristics of PeAPY2 and its role in cold tolerance. We found that PeAPY2 predominantly localized to the plasma membrane, but punctate signals also appeared in the endoplasmic reticulum and Golgi apparatus. PeAPY2 exhibited broad substrate specificity, but it most efficiently hydrolyzed purine nucleotides, particularly ATP. PeAPY2 preferred Mg2+ as a cofactor, and it was insensitive to various, specific ATPase inhibitors. When PeAPY2 was ectopically expressed in Arabidopsis (Arabidopsis thaliana), cold tolerance was enhanced, based on root growth measurements and survival rates. Moreover, under cold stress, PeAPY2-transgenic plants maintained plasma membrane integrity and showed reduced cold-elicited electrolyte leakage compared with wild-type plants. These responses probably resulted from efficient plasma membrane repair via vesicular trafficking. Indeed, transgenic plants showed accelerated endocytosis and exocytosis during cold stress and recovery. We found that low doses of extracellular ATP accelerated vesicular trafficking, but high extracellular ATP inhibited trafficking and reduced cell viability. Cold stress caused significant increases in root medium extracellular ATP. However, under these conditions, PeAPY2-transgenic lines showed greater control of extracellular ATP levels than wild-type plants. We conclude that Arabidopsis plants that overexpressed PeAPY2 could increase membrane repair by accelerating vesicular trafficking and hydrolyzing extracellular ATP to avoid excessive, cold-elicited ATP accumulation in the root medium and, thus, reduced ATP-induced inhibition of vesicular trafficking.
Plant Science | 2015
Zedan Shen; Jun Yao; Jian Sun; Liwei Chang; Shaojie Wang; Mingquan Ding; Zeyong Qian; Huilong Zhang; Nan Zhao; Gang Sa; Peichen Hou; Tao Lang; Feifei Wang; Rui Zhao; Xin Shen; Shaoliang Chen
Poplar species increase expressions of transcription factors to deal with salt environments. We assessed the salt-induced transcriptional responses of heat-shock transcription factor (HSF) and WRKY1 in Populus euphratica, and their roles in salt tolerance. High NaCl (200mM) induced PeHSF and PeWRKY1 expressions in P. euphratica, with a rapid rise in roots than in leaves. Moreover, the salt-elicited PeHSF reached its peak level 6h earlier than PeWRKY1 in leaves. PeWRKY1 was down-regulated in salinized P. euphratica when PeHSF was silenced by tobacco rattle virus-based gene silencing. Subcellular assays in onion epidermal cells and Arabidopsis protoplasts revealed that PeHSF and PeWRKY1 were restricted to the nucleus. Transgenic tobacco plants overexpressing PeWRKY1 showed improved salt tolerance in terms of survival rate, root growth, photosynthesis, and ion fluxes. We further isolated an 1182-bp promoter fragment upstream of the translational start of PeWRKY1 from P. euphratica. Promoter sequence analysis revealed that PeWRKY1 harbours four tandem repeats of heat shock element (HSE) in the upstream regulatory region. Yeast one-hybrid assay showed that PeHSF directly binds the cis-acting HSE. To determine whether the HSE cluster was important for salt-induced PeWRKY1 expression, the promoter-reporter construct PeWRKY1-pro::GUS was transferred to tobacco plants. β-glucuronidase activities increased in root, leaf, and stem tissues under salt stress. Therefore, we conclude that salinity increased PeHSF transcription in P. euphratica, and that PeHSF binds the cis-acting HSE of the PeWRKY1 promoter, thus activating PeWRKY1 expression.
Plant Physiology and Biochemistry | 2013
Meijuan Wang; Yang Wang; Jian Sun; Mingquan Ding; Shurong Deng; Peichen Hou; Xujun Ma; Yuhong Zhang; Feifei Wang; Gang Sa; Yeqing Tan; Tao Lang; Jinke Li; Xin Shen; Shaoliang Chen
The plant plasma membrane (PM) H(+)-ATPase plays a crucial role in controlling K(+)/Na(+) homeostasis under salt stress. Our previous microarray analysis indicated that Populus euphratica retained a higher abundance of PM H(+)-ATPase transcript versus a salt-sensitive poplar. To clarify the roles of the PM H(+)-ATPase in salt sensing and adaptation, we isolated the PM H(+)-ATPase gene PeHA1 from P. euphratica and introduced it into Arabidopsis thaliana. Compared to wild-type, PeHA1-transgenic Arabidopsis had a greater germination rate, root length, and biomass under NaCl stress (50-150 mM). Ectopic expression of PeHA1 remarkably enhanced the capacity to control the homeostasis of ions and reactive oxygen species in salinized Arabidopsis. Flux data from salinized roots showed that transgenic plants exhibited a more pronounced Na(+)/H(+) antiport and less reduction of K(+) influx versus wild-type. Enhanced PM ATP hydrolytic activity, proton pumping, and Na(+)/H(+) antiport in PeHA1-transgenic plants, were consistent to those observed in vivo, i.e., H(+) extrusion, external acidification, and Na(+) efflux. Activities of the antioxidant enzymes ascorbate peroxidase and catalase were typically higher in transgenic seedlings irrespective of salt concentration. In transgenic Arabidopsis roots, H2O2 production was higher under control conditions and increased more rapidly than wild-type when plants were subjected to NaCl treatment. Interestingly, transgenic plants were unable to control K(+)/Na(+) homeostasis when salt-induced H2O2 production was inhibited by diphenylene iodonium, an inhibitor of NADPH oxidase. These observations suggest that PeHA1 accelerates salt tolerance partially through rapid H2O2 production upon salt treatment, which triggers adjustments in K(+)/Na(+) homeostasis and antioxidant defense in Arabidopsis.
Tree Physiology | 2015
Zedan Shen; Jian Sun; Jun Yao; Shaojie Wang; Mingquan Ding; Huilong Zhang; Zeyong Qian; Nan Zhao; Gang Sa; Rui Zhao; Xin Shen; Andrea Polle; Shaoliang Chen
Virus-induced gene silencing (VIGS) has been shown to be an effective tool for investigating gene functions in herbaceous plant species, but has rarely been tested in trees. The establishment of a fast and reliable transformation system is especially important for woody plants, many of which are recalcitrant to transformation. In this study, we established a tobacco rattle virus (TRV)-based VIGS system for two Populus species, Populus euphratica and P. × canescens. Here, TRV constructs carrying a 266 bp or a 558 bp fragment of the phytoene desaturase (PDS) gene were Agrobacterium-infiltrated into leaves of the two poplar species. Agrobacterium-mediated delivery of the shorter insert, TRV2-PePDS266, into the host poplars resulted in expected photobleaching in both tree species, but not the longer insert, PePDS558. The efficiency of VIGS was temperature-dependent, increasing by raising the temperature from 18 to 28 °C. The optimized TRV-VIGS system at 28 °C resulted in a high silencing frequency and efficiency up to 65-73 and 83-94%, respectively, in the two tested poplars. Moreover, syringe inoculation of Agrobacterium in 100 mM acetosyringone induced a more efficient silencing in the two poplar species, compared with other agroinfiltration methods, e.g., direct injection, misting and agrodrench. There were plant species-related differences in the response to VIGS because the photobleaching symptoms were more severe in P. × canescens than in P. euphratica. Furthermore, VIGS-treated P. euphratica exhibited a higher recovery rate (50%) after several weeks of the virus infection, compared with TRV-infected P. × canescens plants (20%). Expression stability of reference genes was screened to assess the relative abundance of PePDS mRNA in VIGS-treated P. euphratica and P. × canescens. PeACT7 was stably expressed in P. euphratica and UBQ-L was selected as the most suitable reference gene for P. × canescens using three different statistical approaches, geNorm, NormFinder and BestKeeper. Quantitative real-time PCR showed significant reductions in PDS transcripts (55-64%) in the photobleached leaves of both VIGS-treated poplar species. Our results demonstrate that the TRV-based VIGS provides a practical tool for gene functional analysis in Populus sp., especially in those poplar species which are otherwise recalcitrant to transformation.
Plant Molecular Biology | 2010
Mingquan Ding; Peichen Hou; Xin Shen; Meijuan Wang; Shurong Deng; Jian Sun; Fei Xiao; Ruigang Wang; Xiaoyang Zhou; Cunfu Lu; Deqiang Zhang; Xiaojiang Zheng; Zanmin Hu; Shaoliang Chen
Plant Cell Tissue and Organ Culture | 2010
Jian Sun; Lisi Li; Meiqin Liu; Meijuan Wang; Mingquan Ding; Shurong Deng; Cunfu Lu; Xiaoyang Zhou; Xin Shen; Xiaojiang Zheng; Shaoliang Chen
Plant Cell Tissue and Organ Culture | 2013
Feifei Wang; Shurong Deng; Mingquan Ding; Jian Sun; Meijuan Wang; Huipeng Zhu; Yansha Han; Zedan Shen; Xiaoshu Jing; Fan Zhang; Yue Hu; Xin Shen; Shaoliang Chen