Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mingtao Zeng is active.

Publication


Featured researches published by Mingtao Zeng.


International Journal of Infectious Diseases | 2014

T-cell-mediated cross-strain protective immunity elicited by prime-boost vaccination with a live attenuated influenza vaccine.

Junwei Li; Maria T. Arévalo; Yanping Chen; Shan Chen; Mingtao Zeng

BACKGROUND Antigenic drift and shift of influenza viruses require frequent reformulation of influenza vaccines. In addition, seasonal influenza vaccines are often mismatched to the epidemic influenza strains. This stresses the need for a universal influenza vaccine. METHODS BALB/c mice were vaccinated with the trivalent live attenuated (LAIV; FluMist) or inactivated (TIV; FluZone) influenza vaccines and challenged with PR8 (H1N1), FM/47 (H1N1), or HK/68 (H3N2) influenza virus. Cytokines and antibody responses were tested by ELISA. Furthermore, different LAIV dosages were applied in BALB/c mice. LAIV vaccinated mice were also depleted of T-cells and challenged with PR8 virus. RESULTS LAIV induced significant protection against challenge with the non-vaccine strain PR8 influenza virus. Furthermore, protective immunity against PR8 was dose-dependent. Of note, interleukin 2 and interferon gamma cytokine secretion in the lung alveolar fluid were significantly elevated in mice vaccinated with LAIV. Moreover, T-cell depletion of LAIV vaccinated mice compromised protection, indicating that T-cell-mediated immunity is required. In contrast, passive transfer of sera from mice vaccinated with LAIV into naïve mice failed to protect against PR8 challenge. Neutralization assays in vitro confirmed that LAIV did not induce cross-strain neutralizing antibodies against PR8 virus. Finally, we showed that three doses of LAIV also provided protection against challenge with two additional heterologous viruses, FM/47 and HK/68. CONCLUSIONS These results support the potential use of the LAIV as a universal influenza vaccine under a prime-boost vaccination regimen.


Journal of Biological Chemistry | 2014

Targeted Silencing of Anthrax Toxin Receptors Protects against Anthrax Toxins

Maria T. Arévalo; Ashley Navarro; Chenoa D. Arico; Junwei Li; Omar Alkhatib; Shan Chen; Diana Diaz-Arévalo; Mingtao Zeng

Background: Existing anthrax postexposure antibiotic treatments are inadequate because they do not clear the high levels of secreted anthrax toxins. Results: Susceptible cells treated with anthrax toxin receptor-targeted siRNAs became resistant to anthrax toxin-mediated cytotoxicity. Conclusion: RNAi-targeted silencing of anthrax toxin receptors prevents toxins from entering target cells and inducing pathogenesis. Significance: Toxin receptor-targeted RNAi can be developed as a postexposure treatment against anthrax. Anthrax spores can be aerosolized and dispersed as a bioweapon. Current postexposure treatments are inadequate at later stages of infection, when high levels of anthrax toxins are present. Anthrax toxins enter cells via two identified anthrax toxin receptors: tumor endothelial marker 8 (TEM8) and capillary morphogenesis protein 2 (CMG2). We hypothesized that host cells would be protected from anthrax toxins if anthrax toxin receptor expression was effectively silenced using RNA interference (RNAi) technology. Thus, anthrax toxin receptors in mouse and human macrophages were silenced using targeted siRNAs or blocked with specific antibody prior to challenge with anthrax lethal toxin. Viability assays were used to assess protection in macrophages treated with specific siRNA or antibody as compared with untreated cells. Silencing CMG2 using targeted siRNAs provided almost complete protection against anthrax lethal toxin-induced cytotoxicity and death in murine and human macrophages. The same results were obtained by prebinding cells with specific antibody prior to treatment with anthrax lethal toxin. In addition, TEM8-targeted siRNAs also offered significant protection against lethal toxin in human macrophage-like cells. Furthermore, silencing CMG2, TEM8, or both receptors in combination was also protective against MEK2 cleavage by lethal toxin or adenylyl cyclase activity by edema toxin in human kidney cells. Thus, anthrax toxin receptor-targeted RNAi has the potential to be developed as a life-saving, postexposure therapy against anthrax.


Vaccine | 2013

Oral vaccination with an adenovirus-vectored vaccine protects against botulism

Shan Chen; Qingfu Xu; Mingtao Zeng

We have previously shown that an adenovirus vectored vaccine delivered intramuscularly or intranasally was effective in protection against botulism in a mouse model. The adenoviral vector encodes a human codon-optimized heavy chain C-fragment (H(C)50) of botulinum neurotoxin type C (BoNT/C). Here, we evaluate the same vaccine candidate as an oral vaccine against BoNT/C in a mouse model. To elicit protective immunity, the mice were orally vaccinated with a single dose of 1×10(4) to 1×10(7)plaque forming units (pfu) of the adenoviral vector. The immune sera, collected six weeks after oral vaccination with 2×10(7)pfu adenovirus, have shown an ability to neutralize the biological activity of BoNT/C in vitro. Additionally, animals receiving a single dose of 2×10(6)pfu adenovirus or greater were completely protected against challenge with 100×MLD(50) of BoNT/C. The data demonstrated the feasibility to develop an adenovirus-based oral vaccine against botulism.


Journal of Controlled Release | 2015

Generation of a safe and effective live viral vaccine by virus self-attenuation using species-specific artificial microRNA

Junwei Li; Maria T. Arévalo; Diana Díaz-Arévalo; Yanping Chen; Jang-Gi Choi; Mingtao Zeng

Vaccination with live attenuated vaccines (LAVs) is an effective way for prevention of infectious disease. While several methods are employed to create them, efficacy and safety are still a challenge. In this study, we evaluated the feasibility of creating a self-attenuated RNA virus expressing a functional species-specific artificial microRNA. Using influenza virus as a model, we produced an attenuated virus carrying a mammalian-specific miR-93 expression cassette that expresses a viral nucleoprotein (NP)-specific artificial microRNA from an insertion site within the non-structural (NS) gene segment. The resulting engineered live-attenuated influenza virus, PR8-amiR-93NP, produced mature and functional artificial microRNA against NP in mammalian cells, but not in avian cells. Furthermore, PR8-amiR-93NP was attenuated by 10(4) fold in mice compared with its wild-type counterpart. Importantly, intranasal immunization with PR8-amiR-93NP conferred cross-protective immunity against heterologous influenza virus strains. In short, this method provides a safe and effective platform for creation of live attenuated RNA viral vaccines.


Frontiers in Immunology | 2015

Intranasal Vaccination with an Engineered Influenza Virus Expressing the Receptor Binding Subdomain of Botulinum Neurotoxin Provides Protective Immunity Against Botulism and Influenza

Junwei Li; Diana Díaz-Arévalo; Yanping Chen; Mingtao Zeng

Influenza virus is a negative segmented RNA virus without DNA intermediate. This makes it safer as a vaccine delivery vector than most DNA viruses that have potential to integrate their genetic elements into host genomes. In this study, we developed a universal influenza viral vector, expressing the receptor binding subdomain of botulinum neurotoxin A (BoNT/A). We tested the growth characters of the engineered influenza virus in chicken eggs and Madin–Darby canine kidney epithelial cells (MDCK), and showed that it can be produced to a titer of 5 × 106 plaque forming unites/ml in chicken eggs and MDCK cells. Subsequently, mice intranasally vaccinated with the engineered influenza virus conferred protection against challenge with lethal doses of active BoNT/A toxin and influenza virus. Our results demonstrated the feasibility to develop a dual purpose nasal vaccine against both botulism and influenza.


Immunology | 2017

A dual purpose universal influenza vaccine candidate confers protective immunity against anthrax

Maria T. Arévalo; Junwei Li; Diana Diaz-Arévalo; Yanping Chen; Ashley Navarro; Lihong Wu; Yongyong Yan; Mingtao Zeng

Preventive influenza vaccines must be reformulated annually because of antigen shift and drift of circulating influenza viral strains. However, seasonal vaccines do not always match the circulating strains, and there is the ever‐present threat that avian influenza viruses may adapt to humans. Hence, a universal influenza vaccine is needed to provide protective immunity against a broad range of influenza viruses. We designed an influenza antigen consisting of three tandem M2e repeats plus HA2, in combination with a detoxified anthrax oedema toxin delivery system (EFn plus PA) to enhance immune responses. The EFn‐3×M2e‐HA2 plus PA vaccine formulation elicited robust, antigen‐specific, IgG responses; and was protective against heterologous influenza viral challenge when intranasally delivered to mice three times. Moreover, use of the detoxified anthrax toxin system as an adjuvant had the additional benefit of generating protective immunity against anthrax. Hence, this novel vaccine strategy could potentially address two major emerging public health and biodefence threats.


Neurogastroenterology and Motility | 2018

Does a glucose-based hydrogen and methane breath test detect bacterial overgrowth in the jejunum?

Olof Sundin; Antonio Mendoza-Ladd; E. Morales; B. M. Fagan; Mingtao Zeng; Diana Diaz-Arévalo; Javier Ordonez; Richard W. McCallum

Direct diagnosis of small intestinal bacterial overgrowth (SIBO) requires the collection and culture of fluid from the jejunal lumen, with a finding of over 105 viable bacteria per mL. More often, SIBO is diagnosed indirectly, using a non‐invasive test of the exhaled hydrogen and methane generated by microbial fermentation when ingested glucose reaches the jejunum. Our objective was to determine how well this breath test detects chronic overgrowth of jejunal bacteria that is unrelated to gastrointestinal surgery.


Human Vaccines & Immunotherapeutics | 2018

Noninvasive vaccination against infectious diseases

Zhichao Zheng; Diana Diaz-Arévalo; Hongbing Guan; Mingtao Zeng

ABSTRACT The development of a successful vaccine, which should elicit a combination of humoral and cellular responses to control or prevent infections, is the first step in protecting against infectious diseases. A vaccine may protect against bacterial, fungal, parasitic, or viral infections in animal models, but to be effective in humans there are some issues that should be considered, such as the adjuvant, the route of vaccination, and the antigen-carrier system. While almost all licensed vaccines are injected such that inoculation is by far the most commonly used method, injection has several potential disadvantages, including pain, cross contamination, needlestick injury, under- or overdosing, and increased cost. It is also problematic for patients from rural areas of developing countries, who must travel to a hospital for vaccine administration. Noninvasive immunizations, including oral, intranasal, and transcutaneous administration of vaccines, can reduce or eliminate pain, reduce the cost of vaccinations, and increase their safety. Several preclinical and clinical studies as well as experience with licensed vaccines have demonstrated that noninvasive vaccine immunization activates cellular and humoral immunity, which protect against pathogen infections. Here we review the development of noninvasive immunization with vaccines based on live attenuated virus, recombinant adenovirus, inactivated virus, viral subunits, virus-like particles, DNA, RNA, and antigen expression in rice in preclinical and clinical studies. We predict that noninvasive vaccine administration will be more widely applied in the clinic in the near future.


Human Vaccines & Immunotherapeutics | 2017

Nasal aluminum (oxy)hydroxide enables adsorbed antigens to induce specific systemic and mucosal immune responses

Haiyue Xu; Tinashe B. Ruwona; Sachin G. Thakkar; Yanping Chen; Mingtao Zeng; Zhengrong Cui

ABSTRACT Some insoluble aluminum salts are commonly used in injectable vaccines as adjuvants to accelerate, prolong, or enhance the antigen-specific immune responses. Data from previous studies testing the nasal mucosal vaccine adjuvant activity of aluminum salts are conflicting. The present study is designed to further assess the feasibility of using aluminum salts in injectable vaccines as nasal mucosal vaccine adjuvants. Using Alhydrogel®, the international scientific standard of aluminum (oxy)hydroxide gels, and ovalbumin or 3 × M2e-HA2, a synthetic influenza virus fusion protein, as antigens, we showed in a mouse model that when dosed intranasally Alhydrogel® enables antigens adsorbed on it to induce stronger antigen-specific immune responses in both serum samples (e.g., specific IgG) and nasal and lung mucosal secretions (i.e., specific IgA) in all immunized mice, as compared with nasal immunization with the antigens alone. Rerouting insoluble aluminum salts in injectable vaccines may represent a viable approach for (nasal) mucosal vaccine adjuvant discovery.


Human Vaccines & Immunotherapeutics | 2016

Induction of protective neutralizing antibody responses against botulinum neurotoxin serotype C using plasmid carried by PLGA nanoparticles

Tinashe B. Ruwona; Haiyue Xu; Junwei Li; Diana Diaz-Arévalo; Amit Kumar; Mingtao Zeng; Zhengrong Cui

ABSTRACT Botulinum neurotoxin (BoNT) is a lethal neurotoxin, for which there is currently not an approved vaccine. Recent efforts in developing vaccine candidates against botulism have been directed at the heavy chain fragment of BoNT, because antibodies against this region have been shown to prevent BoNT from binding to its receptor and thus to nerve cell surface, offering protection against BoNT intoxication. In the present study, it was shown that immunization with plasmid DNA that encodes the 50 KDa C-terminal fragment of the heavy chain of BoNT serotype C (i.e., BoNT/C-Hc50) and is carried by cationic poly (lactic-co-glycolic) acid (PLGA) nanoparticles induces stronger BoNT/C-specific antibody responses, as compared to immunization with the plasmid alone. Importantly, the antibodies have BoNT/C-neutralizing activity, protecting the immunized mice from a lethal dose of BoNT/C challenge. A plasmid DNA vaccine encoding the Hc50 fragments of BoNT serotypes that cause human botulism may represent a viable vaccine candidate for protecting against botulinum neurotoxin intoxication.

Collaboration


Dive into the Mingtao Zeng's collaboration.

Top Co-Authors

Avatar

Diana Diaz-Arévalo

Texas Tech University Health Sciences Center at El Paso

View shared research outputs
Top Co-Authors

Avatar

Junwei Li

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard W. McCallum

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Yanping Chen

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Elisa Morales

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Javier Ordonez

Texas Tech University Health Sciences Center at El Paso

View shared research outputs
Top Co-Authors

Avatar

Antonio Mendoza-Ladd

Texas Tech University Health Sciences Center at El Paso

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olof H. Sundin

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge