Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mingwang Zhang is active.

Publication


Featured researches published by Mingwang Zhang.


Molecular Phylogenetics and Evolution | 2009

Re-examination of the phylogeny of Rhacophoridae (Anura) based on mitochondrial and nuclear DNA

Guohua Yu; Dingqi Rao; Mingwang Zhang; Jun-Xing Yang

The phylogenetic relationships among rhacophorid frogs are under dispute. We use partial sequences of three mitochondrial (12S rRNA, 16S rRNA, and cytochrome b) and three nuclear protein-coding (Rag-1, rhodopsin exon 1, and tyrosinase exon 1) genes from 57 ingroup taxa and eight outgroup taxa to propose a hypothesis for phylogenetic relationships within Rhacophoridae. Our results support recognition of the genus Feihyla, and Chiromantis is the sister taxon to the clade formed by Feihyla, Polypedates and Rhacophorus. We place Aquixalus odontotarsus within Kurixalus, and the remaining species of Aquixalus and Philautus jinxiuensis into the genus Gracixalus. We give Philautus (Kirtixalus) the rank of genus and place Philautus menglaensis within it. The division of species groups among Chinese Rhacophorus needs revision, and a cryptic species is revealed within Rhacophorus nigropunctatus. Rhacophorus pingbianensis is considered a synonym of Rhacophorus omeimontis. The validity of Rhacophorus hui is confirmed by present molecular evidence.


Molecular Phylogenetics and Evolution | 2010

Molecular phylogeography and population structure of a mid-elevation montane frog Leptobrachium ailaonicum in a fragmented habitat of southwest China.

Mingwang Zhang; Dingqi Rao; Junxing Yang; Guohua Yu; Jeffery A. Wilkinson

Leptobrachium ailaonicum is a vulnerable anuran restricted to a patchy distribution associated with small mountain streams surrounded by forested slopes at mid-elevations (approximately 2000-2600m) in the subtropical Mount Wuliang and Mount Ailao ranges in southwest China (Yunnan Province) and northern Vietnam. Given high habitat specificity and lack of suitable habitat in lower elevations between these ranges, we hypothesized limited gene flow between populations throughout its range. We used two mitochondrial genes to construct a phylogeographic pattern within this species in order to test our hypothesis. We also examined whether this phylogeographic pattern is a response to past geological events and/or climatic oscillations. A total of 1989 base pairs were obtained from 81 individuals of nine populations yielding 51 unique haplotypes. Both Bayesian and maximum parsimony phylogenetic analyses revealed four deeply divergent and reciprocally monophyletic mtDNA lineages that approximately correspond to four geographical regions separated by deep river valleys. These results suggest a long history of allopatric separation by vicariance. The distinct geographic distributions of four major clades and the estimated divergence time suggest spatial and temporal separations that coincide with climatic and paleogeographic changes following the orogeny and uplift of Mount Ailao during the late Miocene to mid Pliocene in southwest China. At the southern distribution, the presence of two sympatric yet differentiated clades in two areas are interpreted as a result of secondary contact between previously allopatric populations during cooler Pleistocene glacial cycles. Analysis of molecular variance indicates that most of the observed genetic variation occurs among the four regions implying long-term interruption of maternal gene flow, suggesting that L. ailaonicum may represent more than one distinct species and should at least be separated into four management units corresponding to these four geographic lineages for conservation.


Molecular Phylogenetics and Evolution | 2010

A species boundary within the Chinese Kurixalus odontotarsus species group (Anura: Rhacophoridae): new insights from molecular evidence

Guohua Yu; Mingwang Zhang; Junxing Yang

We construct the phylogeny of the Kurixalus odontotarsus species group using two mitochondrial (12S rRNA and 16S rRNA) genes in an attempt to delimit species boundaries within the Chinese K. odontotarsus group. With strong support values, three major clades are obtained, and all phylogenetic analyses reject monophyly of K. odontotarsus. The Tibetan lineage of K. odontotarsus was clustered with Kurixalus verrucosus from Myanmar (labeled Clade I); K. odontotarsus haplotypes from the type locality and nearby regions formed a distinct clade (labeled Clade II), and K. odontotarsus haplotypes from other places, together with those from Kurixalus bisacculus, K. verrucosus from Vietnam, and Kurixalus hainanus, formed a distinct clade (labeled Clade III). Clade II is the sister taxon to Clade III. The average uncorrected p-distance of 16S rRNA sequences between these three major clades range from 3.11% to 7.88%, which is obviously higher than that within these three major clades (0.03-1.89%). We propose that K. odontotarsus, K. bisacculus, and K. verrucosus should be treated as three independent species. The Tibetan lineage of K. odontotarsus does not belong to K. odontotarsus, and we tentatively place it in K. verrucosus. Kurixalus hainanus is considered a synonym of K. bisacculus. The distribution range of K. bisacculus should be expanded widely to include most regions of South China, and in China the distribution of K. odontotarsus should be limited to its type locality and nearby regions.


PLOS ONE | 2013

Effect of Pleistocene Climatic Oscillations on the Phylogeography and Demography of Red Knobby Newt (Tylototriton shanjing) from Southwestern China

Guohua Yu; Mingwang Zhang; Dingqi Rao; Jun-Xing Yang

Factors that determine the genetic structure of species in southwestern China remain largely unknown. In this study, phylogeography and demography of Tylototriton shanjing was investigated from a mitochondrial perspective to address the role of the Quaternary ice ages in shaping phylogeographic history and genetic diversity of Yunnan. A total of 146 individuals from 19 populations across the entire range of the species were collected. We detected four maternal phylogenetic lineages corresponding to four population groups, and found that major glaciation events during the Pleistocene have triggered the intra-specific divergence. Coalescent simulations indicated that the populations retreated to different refugia located in southern Yunnan, northwestern Yunnan, the border region of western Yunnan with Myanmar, and middle-western Yunnan, respectively, during previous glacial periods in the Pleistocene, and these four refugia were not retained during the Last Glacial Maximum. Population expansions occurred during the last inter-glaciation, during which ice core and pollen data indicated that the temperature and precipitation gradually increased, and declines of population sizes started after the beginning of the Last Glacial Maximum when the climate became cooler and dryer. The paleo-drainage system had no contribution to the current genetic structure and the rivers were not dispersal barriers for this salamander.


PLOS ONE | 2012

Mitochondrial DNA Evidence Indicates the Local Origin of Domestic Pigs in the Upstream Region of the Yangtze River

Long Jin; Mingwang Zhang; Jideng Ma; Jie Zhang; Chaowei Zhou; Yingkai Liu; Tao Wang; An’an Jiang; Lei Chen; Jinyong Wang; Zhongrong Jiang; Li Zhu; Surong Shuai; Ruiqiang Li; Mingzhou Li; Xuewei Li

Previous studies have indicated two main domestic pig dispersal routes in East Asia: one is from the Mekong region, through the upstream region of the Yangtze River (URYZ) to the middle and upstream regions of the Yellow River, the other is from the middle and downstream regions of the Yangtze River to the downstream region of the Yellow River, and then to northeast China. The URYZ was regarded as a passageway of the former dispersal route; however, this assumption remains to be further investigated. We therefore analyzed the hypervariable segements of mitochondrial DNA from 513 individual pigs mainly from Sichuan and the Tibet highlands and 1,394 publicly available sequences from domestic pigs and wild boars across Asia. From the phylogenetic tree, most of the samples fell into a mixed group that was difficult to distinguish by breed or geography. The total network analysis showed that the URYZ pigs possessed a dominant position in haplogroup A and domestic pigs shared the same core haplotype with the local wild boars, suggesting that pigs in group A were most likely derived from the URYZ pool. In addition, a region-wise network analysis determined that URYZ contains 42 haplotypes of which 22 are unique indicating the high diversity in this region. In conclusion, our findings confirmed that pigs from the URYZ were domesticated in situ.


BMC Evolutionary Biology | 2014

Genetic diversity and differentiation of the rhesus macaque (Macaca mulatta) population in western Sichuan, China, based on the second exon of the major histocompatibility complex class II DQB (MhcMamu-DQB1) alleles

Yongfang Yao; Qiu-Xia Dai; Jing Li; Qingyong Ni; Mingwang Zhang; Huailiang Xu

AbstractsBackgroundRhesus macaques living in western Sichuan, China, have been separated into several isolated populations due to habitat fragmentation. Previous studies based on the neutral or nearly neutral markers (mitochondrial DNA or microsatellites) showed high levels of genetic diversity and moderate genetic differentiation in the Sichuan rhesus macaques. Variation at the major histocompatibility complex (MHC) loci is widely accepted as being maintained by balancing selection, even with a low level of neutral variability in some species. However, in small and isolated or bottlenecked populations, balancing selection may be overwhelmed by genetic drift. To estimate microevolutionary forces acting on the isolated rhesus macaque populations, we examined genetic variation at Mhc-DQB1 loci in 119 wild rhesus macaques from five geographically isolated populations in western Sichuan, China, and compared the levels of MHC variation and differentiation among populations with that previously observed at neutral microsatellite markers.Results23 Mamu-DQB1 alleles were identified in 119 rhesus macaques in western Sichuan, China. These macaques exhibited relatively high levels of genetic diversity at Mamu-DQB1. The Hanyuan population presented the highest genetic variation, whereas the Heishui population was the lowest. Analysis of molecular variance (AMOVA) and pairwise FST values showed moderate genetic differentiation occurring among the five populations at the Mhc-DQB1 locus. Non-synonymous substitutions occurred at a higher frequency than synonymous substitutions in the peptide binding region. Levels of MHC variation within rhesus macaque populations are concordant with microsatellite variation. On the phylogenetic tree for the rhesus and crab-eating macaques, extensive allele or allelic lineage sharing is observed betweenthe two species.ConclusionsPhylogenetic analyses confirm the apparent trans-species model of evolution of the Mhc-DQB1 genes in these macaques. Balancing selection plays an important role in sharing allelic lineages between species, but genetic drift may share balancing selection dominance to maintain MHC diversity. Great divergence at neutral or adaptive markers showed that moderate genetic differentiation had occurred in rhesus macaque populations in western Sichuan, China, due to the habitat fragmentation caused by long-term geographic barriers and human activity. The Heishui population should be paid more attention for its lowest level of genetic diversity and relatively great divergence from others.


Mitochondrial DNA | 2016

Evidence of adaptive evolution of alpine pheasants to high-altitude environment from mitogenomic perspective.

Peng Gu; Wei Liu; Yongfang Yao; Qingyong Ni; Mingwang Zhang; Diyan Li; Huailiang Xu

Abstract Adaptive evolutions to high-altitude adaptation have been intensively studied in mammals. However, considering the additional vertebrate groups, new perception regarding selection challenged by high-altitude stress on mitochondrial genome can be gained. To test this hypothesis, we compiled and analyzed the mitochondrial genomes of 5 alpine pheasants and 12 low-altitude species in Phasianidae. The results that evolutionary rates of ATP6 and ND6 showing significant fluctuation among branches when involved with five alpine pheasants revealed both genes might have implications with adapting to highland environment. The radical physico-chemical property changes identified by the modified MM01 model, including composition (C) and equilibrium constant (ionization of COOH) (Pk′) in ATP6 and beta-structure tendencies (Pβ), Pk′, and long-range non-bonded energy (El) in ND6, suggested that minor overall adjustments in size, protein conformation and relative orientation of reaction interfaces have been optimized to provide the ideal environments for electron transfer, proton translocation and generation of adenosine triphosphate (ATP). Additionally, three unique substitution sites were identified under selection in ND6, which could be potentially important adaptive changes contributing to cellular energy production. Our findings suggested that adaptive evolution may occur in alpine pheasants, which are an important complement to the knowledge of genetic mechanisms against the high-altitude environment in non-mammal animals.


Mitochondrial DNA | 2015

Characteristic of complete mitochondrial genome and phylogenetic relationship of Garrulax sannio (Passeriformes, Timaliidae)

Yanyan Zhou; Yu Qi; Yongfang Yao; Zongjin Huan; Diyan Li; Meng Xie; Qingyong Ni; Mingwang Zhang; Huailiang Xu

Abstract Garrulax sannio (Passeriformes, Timaliidae) was the medium-sized bird, whose plumage color was similar for both sexes. The complete sequence of the mitochondrial DNA genome from G. sannio used the polymerase chain reaction method. The genome (17 840 bp in length) contained 13 protein-coding genes, 2 rRNA (12S and 16S) genes, 22 tRNA genes and 2 control regions (D-loop). The base composition of G. sannio mitogenome A + T percentage was 52.22%. It is slightly higher than G + C 47.78% which was similar with other vertebrates. Through constructed phylogenetic tree, we could identify its taxonomic status. Therefore, mitochondrial genome was a best way to preserve genetic resources of species.


Microbial Ecology | 2018

Characterization of the Gut Microbiota in Six Geographical Populations of Chinese Rhesus Macaques ( Macaca mulatta ), Implying an Adaptation to High-Altitude Environment

Junsong Zhao; Yongfang Yao; Diyan Li; Huaming Xu; Jiayun Wu; Anxiang Wen; Meng Xie; Qingyong Ni; Mingwang Zhang; Guangneng Peng; Huailiang Xu

Knowledge about the impact of different geographical environments on rhesus macaque gut microbiota is limited. In this study, we compared the characteristics of gut microbiota in six different Chinese rhesus macaque populations, including Hainan, Nanning, Guizhou, Xichang, Jianchuan and Tibet. Through the composition analysis of operational taxonomic units (OTUs), we found that there were significant differences in the abundance of core overlapping OTUs in the six Chinese groups. Specifically, the Tibet population exhibited the highest gut microbial diversity and the most unique OTUs. Statistically significant differences in the composition of gut microbiota among the six groups at phylum and family level were evident. Specifically, Tibet had higher abundances of Firmicutes and lower abundances of Bacteroidetes than the other geographical groups, and the higher abundance of Firmicutes in the Tibetan group was mainly caused by a significant increase in the family Ruminococcaceae and Christensenellaceae. Phylogenetic investigation of communities by reconstruction of unobserved state analysis showed that the enrichment ratio for environmental information processing and organismal systems was the highest in the Tibet population. Additionally, our results suggested that in the adaptation process of rhesus macaques to different geographical environments, the abundance of the core common flora of the intestinal microbes had undergone varying degree of change and produced new and unique flora, both of which helped to reshape the gut microbiota of rhesus macaques. In particular, this change was more obvious for animals in the high-altitude environments.


Mitochondrial DNA | 2015

The complete mitochondrial genome sequence of Garrulax poecilorhynchus (Aves, Passeriformes, Timaliidae)

Yu Qi; Yanyan Zhou; Yongfang Yao; Zongjin Huan; Diyan Li; Meng Xie; Qingyong Ni; Mingwang Zhang; Huailiang Xu

Abstract The entire mitochondrial genome of Garrulax poecilorhynchus consists of 17 814 bp and containe 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and two control regions. The nucleotide composition of the mitogenome of G. poecilorhynchus is A = 5342 (29.99%), T = 4314 (24.22%), G = 2480 (13.92%), and C = 5678 (31.87%). The genome has an overall A + T content of 54.21%, which has a similar value among known genus Garrulax mitogenomes. All the tRNA genes display a typical clover-leaf structure. Garrulax poecilorhynchus share the closest relationship with other two species, G. perspicillatus and G. sannio. These data could serve to enrich the resource of genus Garrulax in systematic, population genetic, and evolutionary biological studies.

Collaboration


Dive into the Mingwang Zhang's collaboration.

Top Co-Authors

Avatar

Qingyong Ni

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yongfang Yao

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Huailiang Xu

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Diyan Li

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Meng Xie

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Guohua Yu

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Dingqi Rao

Kunming Institute of Zoology

View shared research outputs
Top Co-Authors

Avatar

Yanyan Zhou

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Huaming Xu

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yan Li

Sichuan Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge