Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mingwei Ma is active.

Publication


Featured researches published by Mingwei Ma.


Water Resources Management | 2014

Improvement of Multi-Satellite Real-Time Precipitation Products for Ensemble Streamflow Simulation in a Middle Latitude Basin in South China

Shanhu Jiang; Liliang Ren; Yang Hong; Xiaoli Yang; Mingwei Ma; Yu Zhang; Fei Yuan

The real-time availability of several satellite-based precipitation products has recently provided hydrologists with an unprecedented opportunity to improve current hydrologic prediction capability for vast river basins, particularly for ungauged regions. However, the accuracy of real-time satellite precipitation data remains uncertain. This study aims to use three widely used real-time satellite precipitation products, namely, TRMM Multi satellite Precipitation Analysis real-time precipitation product 3B42 (TMPA 3B42RT), Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIAN), and NOAA/Climate Precipitation Center Morphing Technique (CMORPH), for ensemble stream flow simulation with the gridded xinanjiang (XAJ) model and shuffled complex evolution metropolis (SCEM-UA) algorithm in the middle-latitude Mishui basin in South China. To account the bias of the satellite precipitation data and consider the input uncertainty, two different methods, i.e. a precipitation error multiplier and a precipitation error model were introduced. For each precipitation input model, the posterior probability distribution of the parameters and their associated uncertainty were calibrated using the SCEM-UA algorithm, and 15,000 ensemble stream flow simulations were conducted. The simulations of the satellite precipitation data were then optimally merged using the Bayseian model averaging (BMA) method. The result shows that in Mishui basin, the three sets of real-time satellite precipitation data largely underestimated rainfall. Streamflow simulation performed poorly when the raw satellite precipitation data were taken as input and the model parameters were calibrated with gauged data. By implementing the precipitation error multiplier and the precipitation error model and then recalibrating the model, the behavior of the simulated stream flow and calculated uncertainty boundary were significantly improved. Furthermore, the BMA combination of the simulations from the three datasets resulted in a significantly better prediction with a remarkably reliable uncertainty boundary and was comparable with the simulation using the post-real-time bias-corrected research quality TMPA 3B42V7. The proposed methodology of bias adjustment, uncertainty analysis, and BMA combination collectively facilitates the application of the current three real-time satellite data to hydrological prediction and water resource management over many under-gauged basins. This research is also an investigation on the hydrological utility of multi-satellite precipitation data ensembles, which can potentially integrate additional more satellite products when the Global Precipitation Measuring mission with 9-satellite constellation is anticipated in 2014.


Advances in Meteorology | 2016

Evolution of Hydrological Drought in Human Disturbed Areas: A Case Study in the Laohahe Catchment, Northern China

Yi Liu; Liliang Ren; Ye Zhu; Xiaoli Yang; Fei Yuan; Shanhu Jiang; Mingwei Ma

A case study on the evolution of hydrological drought in nonstationary environments is conducted over the Laohahe catchment in northern China. Using hydrometeorological observations during 1964–2009, meteorological and hydrological droughts are firstly analyzed with the threshold level method. Then, a comprehensive analysis on the changes within the catchment is conducted on the basis of hydrological variables and socioeconomic indices, and the whole period is divided into two parts: the undisturbed period (1964–1979) and the disturbed period (1980–2009). A separating framework is further introduced to distinguish droughts induced by different causes, that is, the naturalized drought and human-induced drought. Results showed that human activities are more inclined to play a negative role in aggravating droughts. Drought duration and deficit volume in naturalized conditions are amplified two to four times and three to eight times, respectively, when human activities are involved. For the two dry decades 1980s and 2000s, human activities have caused several consecutive drought events with rather long durations (up to 29 months). These results reflect the considerable impacts of human activities on hydrological drought, which could provide some theoretical support for local drought mitigation and water resources management.


Stochastic Environmental Research and Risk Assessment | 2016

Hydrologic model-based Palmer indices for drought characterization in the Yellow River basin, China

Mingwei Ma; Liliang Ren; Vijay P. Singh; Fei Yuan; Lu Chen; Xiaoli Yang; Yi Liu

The Palmer indices (PIs) that have been most widely used for drought monitoring and assessment are criticized for two main drawbacks: coarse hydrological accounting processes with a simplified two-stage bucket soil water balance model and arbitrary rules for defining drought properties and standardizing index values through limited calibration and comparison. In this study, we introduce a new proposal of the VIC hydrologic model-based Palmer drought scheme, where traditional PIs (e.g. PDSI) can readily be calculated on the basis of distributed finescale hydrologic simulations. Moreover, recent variants of PI (i.e., SPDI and SPDI-JDI) also provide a preferable standardization strategy that allows probabilistic invariability and better spatio-temporal comparability of computed drought indices. Using gridded meteorological forcing, soil and vegetation data to drive the three-layer VIC model, both non-VIC and VIC-based PIs are investigated to examine their performances for drought characterization and detection. Results indicate that VIC hydrologic model would allow for adjustments in statistical properties of computed PDSI and VIC-based SPDI is also preferable to PDSI for better statistical robustness and spatio-temporal consistency/comparability. Moreover, the joint SPDI-JDI has the strength of integrating multi-scale probabilistic properties and drought information released by individual SPDI, providing overall drought conditions that take into account the onset, persistence and termination of droughts. At proposed 0.25° grid scale, the VIC-based SPDI-JDI indicates high frequency and long total time of drought condition in the Yellow River basin (YRB), China. Although no significant temporal trends are found in identified drought duration and severity, both the seasonal and annual drought index values demonstrate a downward trend (higher drought intensity) for considerable proportions of the YRB. These findings imply high drought risk and potential drying stress for this region. The new framework of hydrologic model-based PIs can help to strengthen our knowledge and/or practices in regional drought monitoring and assessment.


Water Resources Management | 2015

A New Physically Based Self-Calibrating Palmer Drought Severity Index and its Performance Evaluation

Yi Liu; Xiaoli Yang; Liliang Ren; Fei Yuan; Shanhu Jiang; Mingwei Ma

In this study, a new Palmer Drought Severity Index (PDSI) variant is developed by coupling Variable Infiltration Capacity (VIC) model with the self-calibrating PDSI (SCP). Evaluation of the new drought index (denoted as SCPV) is conducted during 1961–2012 over whole Yellow River basin (YRB) through a series of comparisons with SCP, including intermediate variables (moisture departure d, climatic characteristic K and moisture anomaly index Z), long-term series of PDSI values, and their each relationship with other meteorological and agricultural indices. Results show that SCPV generally inherits the advantages of SCP, and improves the deficiencies of SCP in the hydrologic accounting section to some extent. Comparing to SCP, SCPV ameliorates the negative departure of accumulated moisture anomaly index Z of SCP in the semiarid zone. The introduction of physically based VIC model in SCPV reinforces its connection with hydrological variables and hence shows better correlation with other meteorological and agricultural drought indices. Spatial drought trends reflected by SCPV are more reasonable, especially for the source region and northern parts of the YRB. With more preferable behavior in moisture departure simulations, SCPV shows its strength and is promising to be a competent reference in future drought researches.


Stochastic Environmental Research and Risk Assessment | 2016

Uncertainty and variability in bivariate modeling of hydrological droughts

Xinjun Tu; Vijay P. Singh; Xiaohong Chen; Mingwei Ma; Qiang Zhang; Yong Zhao

Abstract There are two kinds of uncertainty factors in modeling the bivariate distribution of hydrological droughts: the alteration of predefined critical ratios for pooling droughts and excluding minor droughts and the temporal variability of univariate and/or bivariate characteristics of droughts due to the impact of human activities. Daily flow data covering a period of 56 hydrological years from two gauging stations from a humid region in South China are used. The influences of alterations of threshold values of flow and critical ratios of pooling droughts and excluding minor droughts on drought properties are analyzed. Six conventional univariate models and three Archimedean copulas are employed to fit the marginal and joint distributions of drought properties, the Kolmogorov–Smirnov and Anderson–Darling methods are used for testing the goodness-of-fit of the univariate model, and the Cramer-von Mises method based on Rosenblatt’s transform is applied for the test of the bivariate model. The change point analysis of the copula parameter of bivariate distribution of droughts is first made. Results demonstrate that both the statistical characteristics of each drought property and their bivariate joint distributions are sensitive to the critical ratio of excluding minor droughts. A model can be selected to fit the marginal distribution for drought deficit volume or maximum deficit, but it is not determined for drought duration with the lower ratios of the pooling and excluding droughts. The statistical uncertainty of drought duration makes the modeling of bivariate joint distribution of drought duration and deficit volume or of drought duration and maximum deficit undermined. Change points significantly occurred in the period from the late 1970s to the middle 1980s for a single drought property and the copula parameter of their joint distribution due to the impact of human activities. The difference between two subseries separated by the change point is remarkable in the magnitudes of drought properties and the joint return periods. A copula function can be selected to optimally fit the bivariate distribution, provided that the critical ratios of pooling and excluding droughts are great enough such as the optimal value of 0.4 in the case study. It is valuable that the modeling and designing of the bivariate joint correlation and distribution of drought properties can be performed on the subseries separated by the change point of the copula parameter.


Advances in Meteorology | 2016

Possible Future Climate Change Impacts on the Hydrological Drought Events in the Weihe River Basin, China

Fei Yuan; Mingwei Ma; Liliang Ren; Hongren Shen; Yue Li; Shanhu Jiang; Xiaoli Yang; Chongxu Zhao; Hao Kong

Quantitative evaluation of future climate change impacts on hydrological drought characteristics is one of important measures for implementing sustainable water resources management and effective disaster mitigation in drought-prone regions under the changing environment. In this study, a modeling system for projecting the potential future climate change impacts on hydrological droughts in the Weihe River basin (WRB) in North China is presented. This system consists of a large-scale hydrological model driven by climate outputs from three climate models (CMs) for future streamflow projections, a probabilistic model for univariate drought assessment, and a copula-based bivariate model for joint drought frequency analysis under historical and future climates. With the observed historical climate data as the inputs, the Variable Infiltration Capacity hydrological model projects an overall runoff reduction in the WRB under the Intergovernmental Panel on Climate Change A1B scenario. The univariate drought assessment found that although fewer hydrological drought events would occur under A1B scenario, drought duration and severity tend to increase remarkably. Moreover, the bivariate drought assessment reveals that future droughts in the same return period as the baseline droughts would become more serious. With these trends in the future, the hydrological drought situation in the WRB would be further deteriorated.


Journal of Hydrology | 2012

Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method

Shanhu Jiang; Liliang Ren; Yang Hong; Bin Yong; Xiaoli Yang; Fei Yuan; Mingwei Ma


Hydrological Processes | 2013

Multivariate drought characteristics using trivariate Gaussian and Student t copulas

Mingwei Ma; Songbai Song; Liliang Ren; Shanhu Jiang; Jiali Song


Hydrological Processes | 2014

A new standardized Palmer drought index for hydro-meteorological use

Mingwei Ma; Liliang Ren; Fei Yuan; Shanhu Jiang; Yi Liu; Hao Kong; Luyan Gong


Journal of Hydrology | 2014

New variants of the Palmer drought scheme capable of integrated utility

Mingwei Ma; Liliang Ren; Vijay P. Singh; Xiaoli Yang; Fei Yuan; Shanhu Jiang

Collaboration


Dive into the Mingwei Ma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinjun Tu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge