Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mingxi Li is active.

Publication


Featured researches published by Mingxi Li.


Nature | 2011

Mapping intact protein isoforms in discovery mode using top-down proteomics

John C. Tran; Leonid Zamdborg; Dorothy R. Ahlf; Ji Eun Lee; Adam D. Catherman; Kenneth R. Durbin; Jeremiah D. Tipton; Adaikkalam Vellaichamy; John F. Kellie; Mingxi Li; Cong Wu; Steve M. M. Sweet; Bryan P. Early; Nertila Siuti; Richard D. LeDuc; Philip D. Compton; Paul M. Thomas; Neil L. Kelleher

A full description of the human proteome relies on the challenging task of detecting mature and changing forms of protein molecules in the body. Large-scale proteome analysis has routinely involved digesting intact proteins followed by inferred protein identification using mass spectrometry. This ‘bottom-up’ process affords a high number of identifications (not always unique to a single gene). However, complications arise from incomplete or ambiguous characterization of alternative splice forms, diverse modifications (for example, acetylation and methylation) and endogenous protein cleavages, especially when combinations of these create complex patterns of intact protein isoforms and species. ‘Top-down’ interrogation of whole proteins can overcome these problems for individual proteins, but has not been achieved on a proteome scale owing to the lack of intact protein fractionation methods that are well integrated with tandem mass spectrometry. Here we show, using a new four-dimensional separation system, identification of 1,043 gene products from human cells that are dispersed into more than 3,000 protein species created by post-translational modification (PTM), RNA splicing and proteolysis. The overall system produced greater than 20-fold increases in both separation power and proteome coverage, enabling the identification of proteins up to 105 kDa and those with up to 11 transmembrane helices. Many previously undetected isoforms of endogenous human proteins were mapped, including changes in multiply modified species in response to accelerated cellular ageing (senescence) induced by DNA damage. Integrated with the latest version of the Swiss-Prot database, the data provide precise correlations to individual genes and proof-of-concept for large-scale interrogation of whole protein molecules. The technology promises to improve the link between proteomics data and complex phenotypes in basic biology and disease research.


The EMBO Journal | 2009

Negative regulation of NF‐κB action by Set9‐mediated lysine methylation of the RelA subunit

Xiao Dong Yang; Bo Huang; Mingxi Li; Acacia Lamb; Neil L. Kelleher; Lin Feng Chen

Proper regulation of NF‐κB activity is critical to maintain and balance the inflammatory response. Inactivation of the NF‐κB complex relies in part on the proteasome‐mediated degradation of promoter‐bound NF‐κB, but the detailed molecular mechanism initiating this process remains elusive. Here, we show that the methylation of the RelA subunit of NF‐κB has an important function in this process. Lysine methyltransferase Set9 physically associates with RelA in vitro and in vivo in response to TNF‐α stimulation. Mutational and mass spectrometric analyses reveal that RelA is monomethylated by Set9 at lysine residues 314 and 315 in vitro and in vivo. Methylation of RelA inhibits NF‐κB action by inducing the proteasome‐mediated degradation of promoter‐associated RelA. Depletion of Set9 by siRNA or mutation of the RelA methylation sites prolongs DNA binding of NF‐κB and enhances TNF‐α‐induced expression of NF‐κB target genes. Together, these findings unveil a novel mechanism by which methylation of RelA dictates the turnover of NF‐κB and controls the NF‐κB‐mediated inflammatory response.


Nature Methods | 2012

A protease for 'middle-down' proteomics

Cong Wu; John C. Tran; Leonid Zamdborg; Kenneth R. Durbin; Mingxi Li; Dorothy R. Ahlf; Bryan P. Early; Paul M. Thomas; Jonathan V. Sweedler; Neil L. Kelleher

We developed a method for restricted enzymatic proteolysis using the outer membrane protease T (OmpT) to produce large peptides (>6.3 kDa on average) for mass spectrometry–based proteomics. Using this approach to analyze prefractionated high-mass HeLa proteins, we identified 3,697 unique peptides from 1,038 proteins. We demonstrated the ability of large OmpT peptides to differentiate closely related protein isoforms and to enable the detection of many post-translational modifications.


Journal of Proteome Research | 2009

Tandem Mass Spectrometry with Ultrahigh Mass Accuracy Clarifies Peptide Identification by Database Retrieval

Michael T. Boyne; Benjamin A. Garcia; Mingxi Li; Leonid Zamdborg; Craig D. Wenger; Shannee Babai; Neil L. Kelleher

A platform was developed to analyze MS/MS spectra from large peptides with low part-per-million mass accuracy, including a commercial-grade software suite. Termed Middle Down Proteomics, this platform identified 7454 peptides from 2-20 kDa (1472 unique) from 555 proteins after 23 LC-MS/MS injections of Lys-C digests of HeLa-S3 nuclear proteins. Along with greatly increased confidence for both peptide identification (expectation values from 10(-89) to 10(-4)) and characterization (up to 18% of peptides were modified in some LC-MS/MS runs), fragmentation data with <2 ppm accuracy enabled error tolerant and routine multiplexed database searching-all clearly demonstrated in this study.


Journal of Biological Chemistry | 2010

Kinetics of Re-establishing H3K79 Methylation Marks in Global Human Chromatin

Steve M. M. Sweet; Mingxi Li; Paul M. Thomas; Kenneth R. Durbin; Neil L. Kelleher

We employ a stable isotope strategy wherein both histones and their methylations are labeled in synchronized human cells. This allows us to differentiate between old and new methylations on pre-existing versus newly synthesized histones. The strategy is implemented on K79 methylation in an isoform-specific manner for histones H3.1, H3.2, and H3.3. Although levels of H3.3K79 monomethylation are higher than that of H3.2/H3.1, the rate of establishing the K79 methylation is the same for all three isoforms. Surprisingly, we find that pre-existing “old” histones continue to be K79-monomethylated and -dimethylated at a rate equal to the newly synthesized histones. These observations imply that some degree of positional “scrambling” of K79 methylation occurs through the cell cycle.


Analytical Chemistry | 2013

Top down proteomics of human membrane proteins from enriched mitochondrial fractions.

Adam D. Catherman; Mingxi Li; John C. Tran; Kenneth R. Durbin; Philip D. Compton; Bryan P. Early; Paul M. Thomas; Neil L. Kelleher

The interrogation of intact integral membrane proteins has long been a challenge for biological mass spectrometry. Here, we demonstrate the application of top down mass spectrometry to whole membrane proteins below 60 kDa with up to 8 transmembrane helices. Analysis of enriched mitochondrial membrane preparations from human cells yielded identification of 83 integral membrane proteins, along with 163 membrane-associated or soluble proteins, with a median q value of 3 × 10(-10). An analysis of matching fragment ions demonstrated that significantly more fragment ions were found within transmembrane domains than would be expected based upon the observed protein sequence. In total, 46 proteins from the complexes of oxidative phosphorylation were identified which exemplifies the increasing ability of top down proteomics to provide extensive coverage in a biological network.


Proteomics | 2010

Intact mass detection, interpretation, and visualization to automate Top‐Down proteomics on a large scale

Kenneth R. Durbin; John C. Tran; Leonid Zamdborg; Steve M. M. Sweet; Adam D. Catherman; Ji Eun Lee; Mingxi Li; John F. Kellie; Neil L. Kelleher

Applying high‐throughput Top‐Down MS to an entire proteome requires a yet‐to‐be‐established model for data processing. Since Top‐Down is becoming possible on a large scale, we report our latest software pipeline dedicated to capturing the full value of intact protein data in automated fashion. For intact mass detection, we combine algorithms for processing MS1 data from both isotopically resolved (FT) and charge‐state resolved (ion trap) LC‐MS data, which are then linked to their fragment ions for database searching using ProSight. Automated determination of human keratin and tubulin isoforms is one result. Optimized for the intricacies of whole proteins, new software modules visualize proteome‐scale data based on the LC retention time and intensity of intact masses and enable selective detection of PTMs to automatically screen for acetylation, phosphorylation, and methylation. Software functionality was demonstrated using comparative LC‐MS data from yeast strains in addition to human cells undergoing chemical stress. We further these advances as a key aspect of realizing Top‐Down MS on a proteomic scale.


Journal of Proteome Research | 2013

Quantitative Peptidomics for Discovery of Circadian-Related Peptides from the Rat Suprachiasmatic Nucleus

Ji Eun Lee; Leonid Zamdborg; Bruce R. Southey; Norman Atkins; Jennifer W. Mitchell; Mingxi Li; Martha U. Gillette; Neil L. Kelleher; Jonathan V. Sweedler

In mammals the suprachiasmatic nucleus (SCN), the master circadian clock, is sensitive to light input via the optic chiasm and synchronizes many daily biological rhythms. Here we explore variations in the expression levels of neuropeptides present in the SCN of rats using a label-free quantification approach that is based on integrating peak intensities between daytime, Zeitgeber time (ZT) 6, and nighttime, ZT 18. From nine analyses comparing the levels between these two time points, 10 endogenous peptides derived from eight prohormones exhibited significant differences in their expression levels (adjusted p-value <0.05). Of these, seven peptides derived from six prohormones, including GRP, PACAP, and CART, exhibited ≥ 30% increases at ZT 18, and the VGRPEWWMDYQ peptide derived from proenkephalin A showed a >50% increase at nighttime. Several endogenous peptides showing statistically significant changes in this study have not been previously reported to alter their levels as a function of time of day, nor have they been implicated in prior functional SCN studies. This information on peptide expression changes serves as a resource for discovering unknown peptide regulators that affect circadian rhythms in the SCN.


Analytical Chemistry | 2014

Comparing label-free quantitative peptidomics approaches to characterize diurnal variation of peptides in the rat suprachiasmatic nucleus

Bruce R. Southey; Ji Eun Lee; Leonid Zamdborg; Norman Atkins; Jennifer W. Mitchell; Mingxi Li; Martha U. Gillette; Neil L. Kelleher; Jonathan V. Sweedler

Mammalian circadian rhythm is maintained by the suprachiasmatic nucleus (SCN) via an intricate set of neuropeptides and other signaling molecules. In this work, peptidomic analyses from two times of day were examined to characterize variation in SCN peptides using three different label-free quantitation approaches: spectral count, spectra index and SIEVE. Of the 448 identified peptides, 207 peptides were analyzed by two label-free methods, spectral count and spectral index. There were 24 peptides with significant (adjusted p-value < 0.01) differential peptide abundances between daytime and nighttime, including multiple peptides derived from secretogranin II, cocaine and amphetamine regulated transcript, and proprotein convertase subtilisin/kexin type 1 inhibitor. Interestingly, more peptides were analyzable and had significantly different abundances between the two time points using the spectral count and spectral index methods than with a prior analysis using the SIEVE method with the same data. The results of this study reveal the importance of using the appropriate data analysis approaches for label-free relative quantitation of peptides. The detection of significant changes in so rich a set of neuropeptides reflects the dynamic nature of the SCN and the number of influences such as feeding behavior on circadian rhythm. Using spectral count and spectral index, peptide level changes are correlated to time of day, suggesting their key role in circadian function.


Proteomics | 2013

Oncogene Induced Cellular Senescence Elicits an Anti-Warburg Effect

Mingxi Li; Kenneth R. Durbin; Steve M. M. Sweet; Jeremiah D. Tipton; Neil L. Kelleher

Cellular senescence, an irreversible cell cycle arrest induced by a diversity of stimuli, has been considered as an innate tumor suppressing mechanism with implications and applications in cancer therapy. Using a targeted proteomics approach, we show that fibroblasts induced into senescence by expression of oncogenic Ras exhibit a decrease of global acetylation on all core histones, consistent with formation of senescence‐associated heterochromatic foci. We also detected clear increases in repressive markers (e.g. >50% elevation of H3K27me2/3) along with decreases in histone marks associated with increased transcriptional expression/elongation (e.g. H3K36me2/3). Despite the increases in repressive marks of chromatin, 179 loci (of 2206 total) were found to be upregulated by global quantitative proteomics. The changes in the cytosolic proteome indicated an upregulation of mitochondrial proteins and downregulation of proteins involved in glycolysis. These alterations in primary metabolism are opposite to the well‐known Warburg effect observed in cancer cells. This study significantly improves our understanding of stress‐induced senescence and provides a potential application for triggering it in antiproliferative strategies that target the primary metabolism in cancer cells.

Collaboration


Dive into the Mingxi Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John C. Tran

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge