Mingxu Xu
University of Texas Southwestern Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mingxu Xu.
Cancer Research | 2006
Kensuke Yamauchi; Meng Yang; Ping Jiang; Mingxu Xu; Norio Yamamoto; Hiroyuki Tsuchiya; Katsuro Tomita; Abdool R. Moossa; Michael Bouvet; Robert M. Hoffman
With the use of dual-color fluorescent cells and a highly sensitive whole-mouse imaging system with both macro-optics and micro-optics, we report here the development of subcellular real-time imaging of cancer cell trafficking in live mice. To observe cytoplasmic and nuclear dynamics in the living mouse, tumor cells were labeled in the nucleus with green fluorescent protein and with red fluorescent protein in the cytoplasm. Dual-color cancer cells were injected by a vascular route in an abdominal skin flap in nude mice. The mice were imaged with an Olympus OV100 whole-mouse imaging system with a sensitive CCD camera and five objective lenses, parcentered and parfocal, enabling imaging from macrocellular to subcellular. We observed the nuclear and cytoplasmic behavior of cancer cells in real time in blood vessels as they moved by various means or adhered to the vessel surface in the abdominal skin flap. During extravasation, real-time dual-color imaging showed that cytoplasmic processes of the cancer cells exited the vessels first, with nuclei following along the cytoplasmic projections. Both cytoplasm and nuclei underwent deformation during extravasation. Different cancer cell lines seemed to strongly vary in their ability to extravasate. With the dual-color cancer cells and the highly sensitive whole-mouse imaging system described here, the subcellular dynamics of cancer metastasis can now be observed in live mice in real time. This imaging technology will enable further understanding of the critical steps of metastasis and provide visible targets for antimetastasis drug development.
Cancer Research | 2004
Norio Yamamoto; Ping Jiang; Meng Yang; Mingxu Xu; Kensuke Yamauchi; Hiroyuki Tsuchiya; Katsuro Tomita; Geoffrey M. Wahl; Abdool R. Moossa; Robert M. Hoffman
We report here the genetic engineering of dual-color fluorescent cells with one color in the nucleus and the other in the cytoplasm that enables real-time nuclear-cytoplasmic dynamics to be visualized in living cells in vivo as well as in vitro. To obtain the dual-color cells, red fluorescent protein (RFP) was expressed in the cytoplasm of HT-1080 human fibrosarcoma cells, and green fluorescent protein (GFP) linked to histone H2B was expressed in the nucleus. Nuclear GFP expression enabled visualization of nuclear dynamics, whereas simultaneous cytoplasmic RFP expression enabled visualization of nuclear cytoplasmic ratios as well as simultaneous cell and nuclear shape changes. Thus, total cellular dynamics can be visualized in the living dual-color cells in real time. The parental HT-1080 and the derived dual-color clones had similar cell proliferation rates, suggesting that expression of GFP and/or RFP does not affect cell cycle progression. The cell cycle position of individual living cells was readily visualized by the nuclear-cytoplasmic ratio and nuclear morphology. Real-time induction of apoptosis was observed by nuclear size changes and progressive nuclear fragmentation. Mitotic cells were visualized by whole-body imaging after injection in the mouse ear. Common carotid artery injection of dual-color cells and a reversible skin flap enabled the external visualization of the dual-color cells in microvessels in the mouse brain where extreme elongation of the cell body as well as the nucleus occurred. Dual-color cells in various positions of the cell cycle were visualized in excised mouse lungs after tail-vein injection of the dual-color cells. In the lung, the dual-color cells were observed frequently juxtaposing their nuclei, suggesting a potential novel form of cell-cell communication. The dual-color cells thus are a useful tool for visualizing living-cell dynamics in vivo as well as in vitro. Drugs that could specifically perturb these processes can now be readily screened in real time in vivo.
Cancer Research | 2005
Kensuke Yamauchi; Meng Yang; Ping Jiang; Norio Yamamoto; Mingxu Xu; Yasuyuki Amoh; Kazuhiko Tsuji; Michael Bouvet; Hiroyuki Tsuchiya; Katsuro Tomita; A. R. Moossa; Robert M. Hoffman
The mechanism of cancer cell deformation and migration in narrow vessels is incompletely understood. In order to visualize the cytoplasmic and nuclear dynamics of cells migrating in capillaries, red fluorescent protein was expressed in the cytoplasm, and green fluorescent protein, linked to histone H2B, was expressed in the nucleus of cancer cells. Immediately after the cells were injected in the heart of nude mice, a skin flap on the abdomen was made. With a color CCD camera, we could observe highly elongated cancer cells and nuclei in capillaries in the skin flap in living mice. The migration velocities of the cancer cells in the capillaries were measured by capturing images of the dual-color fluorescent cells over time. The cells and nuclei in the capillaries elongated to fit the width of these vessels. The average length of the major axis of the cancer cells in the capillaries increased to approximately four times their normal length. The nuclei increased their length 1.6 times in the capillaries. Cancer cells in capillaries over 8 microm in diameter could migrate up to 48.3 microm/hour. The data suggests that the minimum diameter of capillaries where cancer cells are able to migrate is approximately 8 microm. The use of the dual-color cancer cells differentially labeled in the cytoplasm and nucleus and associated fluorescent imaging provide a powerful tool to understand the mechanism of cancer cell migration and deformation in small vessels.
Cell Cycle | 2006
Ping Jiang; Kensuke Yamauchi; Meng Yang; Kazuhiko Tsuji; Mingxu Xu; Anirban Maitra; Michael Bouvet; Robert M. Hoffman
Dual-color fluorescent cells with one color fluorescent protein in the nucleus and another color fluorescent protein in the cytoplasm were genetically engineered. The dual-color cancer cells enable real-time nuclear-cytoplasmic dynamics to be visualized in living cells in vivo as well as in vitro. To obtain the dual-color cells, red fluorescent protein (RFP) was expressed in the cytoplasm of a series of human and rodent cancer cells, and green fluorescent protein (GFP) linked to histone H2B was expressed in the nucleus. Nuclear GFP expression enabled visualization of nuclear dynamics, whereas simultaneous cytoplasmic RFP expression enabled visualization of nuclear-cytoplasmic ratios as well as simultaneous cell and nuclear shape changes. Using the Olympus OV100 Whole-Mouse Imaging System, total sub-cellular dynamics can be visualized in the living dual-color cells in real time in the live mouse after cell injection. Highly elongated cancer cells and nuclei in narrow capillaries were visualized where both the nuclei and cytoplasm deform. Both cytoplasm and nuclei were visualized to undergo extreme deformation during extravasation with cytoplasmic processing exiting vessels first and nuclei following along these processes. The dual-color cells described here thus enable the sub-cellular dynamics of cancer cell trafficking to be imaged in the living animal.
Clinical & Experimental Metastasis | 2003
Norio Yamamoto; Meng Yang; Ping Jiang; Mingxu Xu; Hiroyuki Tsuchiya; Katsuro Tomita; A. R. Moossa; Robert M. Hoffman
We have established stable, bright green fluorescent protein (GFP)- or red fluorescent protein (RFP)-expressing HT-1080 human fibrosarcoma clones. These cell lines showed similar cell proliferation rates and high-frequency experimental lung metastasis. The HT-1080-GFP and -RFP clones enable simultaneous real-time dual-color imaging in the live animal. HT-1080 cells were transduced with retroviral vectors containing GFP or RFP and the neomycin resistance gene. Stable transformants were selected stepwise with G418 up to 800 μl/ml. Subsequently, high GFP- or RFP-expressing clones, HT-1080-GFP or HT-1080-RFP, respectively, were selected. 3×106 cells from each clone were mixed and injected into the tail vein of SCID mice. The cells seeded the lung at high frequency with subsequent formation of pure green and pure red colonies as well as mixed yellow colonies with different patterns visualized directly on excised lungs. The lung metastases were also visualized by external fluorescence imaging in live animals through skin-flap windows over the chest wall. Lung metastases were observed on the lung surface of all mice. SCID mice well tolerated multiple surgical procedures for direct-view imaging via skin-flap windows. Real-time metastatic growth of the two different colored clones in the same lung was externally imaged with resolution and quantification of green, red, or yellow colonies in live animals. The color coding enabled determination of whether the colonies grew clonally or were seeded as a mixture with one cell type eventually dominating, or whether the colonies grew as a mixture. The simultaneous real-time dual-color imaging of metastatic colonies described in this report gives rise to the possibility of color-coded imaging of clones of cancer cells carrying various forms of gene of interest.
Cancer Gene Therapy | 2003
Norio Yamamoto; Anshu Gupta; Mingxu Xu; Kenji Miki; Yoshihide Tsujimoto; Hiroyuki Tsuchiya; Katsuro Tomita; A. R. Moossa; Robert M. Hoffman
We have previously shown that the toxic pro-oxidant methylselenol is released from selenomethionine (SeMET) by cancer cells transformed with the adenoviral methionine α,γ-lyase (methioninase, MET) gene cloned from Pseudomonas putida. Methylselenol damaged the mitochondria via oxidative stress, and caused cytochrome c release into the cytosol thereby activating caspase enzymes and thereby apoptosis. However, gene therapy strategies are less effective if tumor cells overexpress the antiapoptotic mitochondrial protein bcl-2. In this study, we investigated whether rAdMET/SeMET was effective against bcl-2-overproducing A549 lung cancer cells. We established two clones of the human lung cancer A549 cell line that show moderate and high expression levels of bcl-2, respectively, compared to the parent cell line, which has very low bcl-2 expression. Staurosporine-induced apoptosis was inhibited in the bcl-2-overproducing clones as well as in the parental cell line. In contrast to staurosporine, apoptosis was induced in the bcl-2-overproducing clones as well as the parental cell line by AdMET/SeMET. Apoptosis in the rAdMET–SeMET-treated cells was determined by fragmentation of nuclei, and release of cytochrome c from mitochondria to the cytosol. A strong bystander effect of AdMET/SeMET was observed on A549 cells as well as the bcl-2-overproducing clones. rAdMET/SeMET prodrug gene therapy is therefore a promising novel strategy effective against bcl-2 overexpression, which has blocked other gene therapy strategies.
Cancer Gene Therapy | 2000
Kenji Miki; Mingxu Xu; Zili An; Xiaoen Wang; Meng Yang; Waddah B. Al-Refaie; Xinghua Sun; Eugene Baranov; Yuying Tan; Takashi Chishima; Hiroshi Shimada; A. R. Moossa; Robert M. Hoffman
We have previously demonstrated the antitumor efficacy of recombinant methioninase (rMETase) derived from Pseudomonas putida. To enhance the efficacy of rMETase, we have constructed the pLGFP-METSN retrovirus encoding the P. putida methioninase (MET) gene fused with the green fluorescent protein (GFP) gene. pLGFP-METSN or control vector pLGFPSN was introduced into the human lung cancer cell line H460. The methionine level of H460-GFP-MET cells was reduced to 33% of that of H460-GFP cells. rMETase (0.08 U/mL) in the medium resulted in 10% survival of H460-GFP-MET cells compared with untreated cells in vitro. In contrast, rMETase-treated H460-GFP cells survived at 90% of control. Tissue fragments harvested from subcutaneous tumors of H460-GFP-MET or H460-MET were implanted by surgical orthotopic implantation into the lungs of nude mice. A suboptimal dose of rMETase was administered intraperitoneally daily to mice in each group. Overall survival of rMETase-treated animals with H460-GFP-MET tumors was significantly longer than either rMETase-treated or -untreated animals with H460-GFP tumors (P < .05 in log-rank test). In two repeat experiments, rMETase-treated animals with H460-GFP-MET tumors had a 30-day survival of 80% and 83%, respectively. Untreated animals with H460-GFP-MET tumors had a 30-day survival of 40% and 58%, respectively. rMETase-treated animals with H460-GFP tumors had a 30-day survival of 0% and 33%, respectively. Untreated animals with H460-GFP tumors had a 30-day survival of 0% and 33%, respectively. The retrovirus-mediated gene transfer of METase decreased the intracellular methionine level of tumor cells and consequently enhanced the efficacy of treatment with the rMETase protein. We have thus demonstrated a new strategy of combination tumor therapy with the gene and gene product of MET.
Clinical Chemistry | 2003
Yuying Tan; Xinghua Sun; Li Tang; Nan Zhang; Qinghong Han; Mingxu Xu; Xuezhong Tan; Xiuying Tan; Robert M. Hoffman
Various methods have been developed for plasma total homocysteine (tHCY) measurement, including a tHCY enzyme conversion immunoassay designed for the Abbott IMx analyzer (1), a microtiter plate tHCY enzymatic immunoassay assay (2), HPLC methods (3)(4)(5), and gas chromatography–mass spectrometry methods (6). We have described a single-enzyme tHCY assay (enzymatic tHCY assay) based on a highly specific recombinant form of l-homocysteine α,γ-lyase (rHCYase) (7)(8). We report here the application of this tHCY enzymatic assay on the Hitachi 912 automatic chemistry analyzer. The principle of the assay is that rHCYase produces H2S from tHCY and that the H2S is quantified by its reaction with N,N -dibutylphenylenediamine, which produces a chromophore. The assay uses four reagents and thus is compatible …
Proceedings of the National Academy of Sciences of the United States of America | 2005
Ming Zhao; Meng Yang; Xiao-Ming Li; Ping Jiang; Eugene Baranov; Shukuan Li; Mingxu Xu; Sheldon Penman; Robert M. Hoffman
Protein Expression and Purification | 1997
Yuying Tan; Mingxu Xu; Xuezhong Tan; Xiuying Tan; Xiaoen Wang; Yoshiro Saikawa; Takeshi Nagahama; Xinghua Sun; Martin Lenz; Robert M. Hoffman