Mingzhe Jiang
University of Turku
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mingzhe Jiang.
Future Generation Computer Systems | 2018
Amir M. Rahmani; Tuan Nguyen Gia; Behailu Negash; Arman Anzanpour; Iman Azimi; Mingzhe Jiang; Pasi Liljeberg
Current developments in ICTs such as in Internet-of-Things (IoT) and CyberPhysical Systems (CPS) allow us to develop healthcare solutions with more intelligent and prediction capabilities both for daily life (home/office) and in-hospitals. In most of IoT-based healthcare systems, especially at smart homes or hospitals, a bridging point (i.e.,gateway) is needed between sensor infrastructure network and the Internet. The gateway at the edge of the network often just performs basic functions such as translating between the protocols used in the Internet and sensor networks. These gateways have beneficial knowledge and constructive control over both the sensor network and the data to be transmitted through the Internet. In this paper, we exploit the strategic position of such gateways at the edge of the network to offer several higher-level services such as local storage, real-time local data processing, embedded data mining, etc., presenting thus a Smart e-Health Gateway. We then propose to exploit the concept of Fog Computing in Healthcare IoT systems by forming a Geo-distributed intermediary layer of intelligence between sensor nodes and Cloud. By taking responsibility for handling some burdens of the sensor network and a remote healthcare center, our Fog-assisted system architecture can cope with many challenges in ubiquitous healthcare systems such as mobility, energy efficiency, scalability, and reliability issues. A successful implementation of Smart e-Health Gateways can enable massive deployment of ubiquitous health monitoring systems especially in clinical environments. We also present a prototype of a Smart e-Health Gateway called UT-GATE where some of the discussed higher-level features have been implemented. We also implement an IoT-based Early Warning Score (EWS) health monitoring to practically show the efficiency and relevance of our system on addressing a medical case study. Our proof-of-concept design demonstrates an IoT-based health monitoring system with enhanced overall system intelligence, energy efficiency, mobility, performance, interoperability, security, and reliability.
dependable autonomic and secure computing | 2015
Tuan Nguyen Gia; Mingzhe Jiang; Amir-Mohammad Rahmani; Tomi Westerlund; Pasi Liljeberg; Hannu Tenhunen
Internet of Things technology provides a competent and structured approach to improve health and wellbeing of mankind. One of the feasible ways to offer healthcare services based on IoT is to monitor humans health in real-time using ubiquitous health monitoring systems which have the ability to acquire bio-signals from sensor nodes and send the data to the gateway via a particular wireless communication protocol. The real-time data is then transmitted to a remote cloud server for real-time processing, visualization, and diagnosis. In this paper, we enhance such a health monitoring system by exploiting the concept of fog computing at smart gateways providing advanced techniques and services such as embedded data mining, distributed storage, and notification service at the edge of network. Particularly, we choose Electrocardiogram (ECG) feature extraction as the case study as it plays an important role in diagnosis of many cardiac diseases. ECG signals are analyzed in smart gateways with features extracted including heart rate, P wave and T wave via a flexible template based on a lightweight wavelet transform mechanism. Our experimental results reveal that fog computing helps achieving more than 90% bandwidth efficiency and offering low-latency real time response at the edge of the network.
Archive | 2018
Behailu Negash; Tuan Nguyen Gia; Arman Anzanpour; Iman Azimi; Mingzhe Jiang; Tomi Westerlund; Amir M. Rahmani; Pasi Liljeberg; Hannu Tenhunen
Developments in technology have shifted the focus of medical practice from treating a disease to prevention. Currently, a significant enhancement in healthcare is expected to be achieved through the Internet of Things (IoT). There are various wearable IoT devices that track physiological signs and signals in the market already. These devices usually connect to the Internet directly or through a local smart phone or a gateway. Home-based and in hospital patients can be continuously monitored with wearable and implantable sensors and actuators. In most cases, these sensors and actuators are resource constrained to perform computing and operate for longer periods. The use of traditional gateways to connect to the Internet provides only connectivity and limited network services. With the introduction of the Fog computing layer, closer to the sensor network, data analytics and adaptive services can be realized in remote healthcare monitoring. This chapter focuses on a smart e-health gateway implementation for use in the Fog computing layer, connecting a network of such gateways, both in home and in hospital use. To show the application of the services, simple healthcare scenarios are presented. The features of the gateway in our Fog implementation are discussed and evaluated.
international conference on wireless communications and mobile computing | 2017
Tuan Nguyen Gia; Mingzhe Jiang; Victor Kathan Sarker; Amir M. Rahmani; Tomi Westerlund; Pasi Liljeberg; Hannu Tenhunen
A better lifestyle starts with a healthy heart. Unfortunately, millions of people around the world are either directly affected by heart diseases such as coronary artery disease and heart muscle disease (Cardiomyopathy), or are indirectly having heart-related problems like heart attack and/or heart rate irregularity. Monitoring and analyzing these heart conditions in some cases could save a life if proper actions are taken accordingly. A widely used method to monitor these heart conditions is to use ECG or electrocardiography. However, devices used for ECG are costly, energy inefficient, bulky, and mostly limited to the ambulatory environment. With the advancement and higher affordability of Internet of Things (IoT), it is possible to establish better health-care by providing real-time monitoring and analysis of ECG. In this paper, we present a low-cost health monitoring system that provides continuous remote monitoring of ECG together with automatic analysis and notification. The system consists of energy-efficient sensor nodes and a fog layer altogether taking advantage of IoT. The sensor nodes collect and wirelessly transmit ECG, respiration rate, and body temperature to a smart gateway which can be accessed by appropriate care-givers. In addition, the system can represent the collected data in useful ways, perform automatic decision making and provide many advanced services such as real-time notifications for immediate attention.
static analysis symposium | 2016
Mingzhe Jiang; Tuan Nguyen Gia; Arman Anzanpour; Amir-Mohammad Rahmani; Tomi Westerlund; Sanna Salanterä; Pasi Liljeberg; Hannu Tenhunen
Biopotentials including Electrocardiography (ECG), Electromyography (EMG) and Electroencephalography (EEG) measure the activity of heart, muscles and brain, respectively. They can be used for noninvasive diagnostic applications, assistance in rehabilitation medicine and human-computer interaction. The concept of Internet of Things (IoT) can bring added value to applications with biopotential signals in healthcare and human-computer interaction by integrating multiple technologies such as sensors, wireless communication and data science. In this work, we present a wireless biopotentials remote monitoring and processing system. A prototype with the case study of facial expression recognition using four channel facial sEMG signals is implemented. A multivariate Gaussian classifier is trained off-line from one persons surface EMG (sEMG) signals with four facial expressions: neutral, smile, frown and wrinkle nose. The presented IoT application system is implemented on the basis of an eight channel biopotential measurement device, Wi-Fi module as well as signal processing and classification provided as a Cloud service. In the system, the real-time sEMG data stream is filtered, feature extracted and classified within each data segment and the processed data is visualized in a browser remotely together with the classification result.
dependable autonomic and secure computing | 2015
Mingzhe Jiang; Amir-Mohammad Rahmani; Tomi Westerlund; Pasi Liljeberg; Hannu Tenhunen
Facial expression recognition has broad application prospects in the fields of psychological study, nursing care, Human Computer Interaction as well as affective computing. The method with surface Electromyogram (sEMG), which is one of vital bio-signals, has its superiority in several aspects such as high temporal resolution and data processing efficiency over other methods. Researches regarding EMG signal to study emotional expression have started since the second half of last century. Meanwhile, studies on myoelectrical control systems focusing on the computation of bio-signal processing and data analysis have been blooming in the recent twenty years. To have a comprehensive view of utilizing facial sEMG method, a systematic review is presented in this paper for facial expression recognition from experiment design to measurement systems, and data analysis steps.
static analysis symposium | 2017
Victor Kathan Sarker; Mingzhe Jiang; Tuan Nguyen Gia; Arman Anzanpour; Amir M. Rahmani; Pasi Liljeberg
Physical indicators are directly related with health and fitness of human body. By employing real-time e-health monitoring systems for acquiring, and analyzing bio-signals by measurements such as electrocardiogram (ECG) and electromyography (EMG), it is possible to extract information to achieve better health-care in terms of observation, diagnosis, and treatment. However, those systems are limited in acquiring and sending data at high rates, are not energy efficient, or, are restricted in terms of portability due to large size and weight. In this paper, a compact portable bio-signal acquisition device for wearables has been designed and implemented. The developed hardware is capable of acquiring and reliably sending the data wirelessly at a high transfer rate in real-time while keeping the overall energy consumption low. Finally, the signal acquisition performance of the device has been evaluated for both ECG and EMG at 8 channel 24 bit resolution/channel 500 samples/s configuration. Measurement of energy consumption has been conducted using professional tool and it is found that the device can continuously work for up to 13.6 hours with a 3.7V 1700 mAh battery. In addition, the device has been used in an IoT-based system as an example of possible integration.
IEEE Journal of Biomedical and Health Informatics | 2017
Geng Yang; Mingzhe Jiang; Wei Ouyang; Guangchao Ji; Haibo Xie; Amir M. Rahmani; Pasi Liljeberg; Hannu Tenhunen
Facial expressions are among behavioral signs of pain that can be employed as an entry point to develop an automatic human pain assessment tool. Such a tool can be an alternative to the self-report method and particularly serve patients who are unable to self-report like patients in the intensive care unit and minors. In this paper, a wearable device with a biosensing facial mask is proposed to monitor pain intensity of a patient by utilizing facial surface electromyogram (sEMG). The wearable device works as a wireless sensor node and is integrated into an Internet of Things (IoT) system for remote pain monitoring. In the sensor node, up to eight channels of sEMG can be each sampled at 1000 Hz, to cover its full frequency range, and transmitted to the cloud server via the gateway in real time. In addition, both low energy consumption and wearing comfort are considered throughout the wearable device design for long-term monitoring. To remotely illustrate real-time pain data to caregivers, a mobile web application is developed for real-time streaming of high-volume sEMG data, digital signal processing, interpreting, and visualization. The cloud platform in the system acts as a bridge between the sensor node and web browser, managing wireless communication between the server and the web application. In summary, this study proposes a scalable IoT system for real-time biopotential monitoring and a wearable solution for automatic pain assessment via facial expressions.
Journal of Clinical Monitoring and Computing | 2018
Mingzhe Jiang; Riitta Mieronkoski; Elise Syrjälä; Arman Anzanpour; Virpi Terävä; Amir M. Rahmani; Sanna Salanterä; Riku Aantaa; Nora M. Hagelberg; Pasi Liljeberg
Current acute pain intensity assessment tools are mainly based on self-reporting by patients, which is impractical for non-communicative, sedated or critically ill patients. In previous studies, various physiological signals have been observed qualitatively as a potential pain intensity index. On the basis of that, this study aims at developing a continuous pain monitoring method with the classification of multiple physiological parameters. Heart rate (HR), breath rate (BR), galvanic skin response (GSR) and facial surface electromyogram were collected from 30 healthy volunteers under thermal and electrical pain stimuli. The collected samples were labelled as no pain, mild pain or moderate/severe pain based on a self-reported visual analogue scale. The patterns of these three classes were first observed from the distribution of the 13 processed physiological parameters. Then, artificial neural network classifiers were trained, validated and tested with the physiological parameters. The average classification accuracy was 70.6%. The same method was applied to the medians of each class in each test and accuracy was improved to 83.3%. With facial electromyogram, the adaptivity of this method to a new subject was improved as the recognition accuracy of moderate/severe pain in leave-one-subject-out cross-validation was promoted from 74.9 ± 21.0 to 76.3 ± 18.1%. Among healthy volunteers, GSR, HR and BR were better correlated to pain intensity variations than facial muscle activities. The classification of multiple accessible physiological parameters can potentially provide a way to differentiate among no, mild and moderate/severe acute experimental pain.
IEEE International Body Sensor Networks Conference (BSN’15),June 9 - 12, 2015, Cambridge, USA | 2015
Tuan Nguyen Gia; Mingzhe Jiang; Amir-Mohammad Rahmani; Tomi Westerlund; Kunal Mankodiya; Pasi Liljeberg; Hannu Tenhunen