Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mingzhe Yu is active.

Publication


Featured researches published by Mingzhe Yu.


Journal of Physical Chemistry Letters | 2012

p-Type Dye-Sensitized Solar Cells Based on Delafossite CuGaO2 Nanoplates with Saturation Photovoltages Exceeding 460 mV.

Mingzhe Yu; Gayatri Natu; Zhiqiang Ji; Yiying Wu

Exploring new p-type semiconductor nanoparticles alternative to the commonly used NiO is crucial for p-type dye-sensitized solar cells (p-DSSCs) to achieve higher open-circuit voltages (Voc). Here we report the first application of delafossite CuGaO2 nanoplates for p-DSSCs with high photovoltages. In contrast to the dark color of NiO, our CuGaO2 nanoplates are white. Therefore, the porous films made of these nanoplates barely compete with the dye sensitizers for visible light absorption. This presents an attractive advantage over the NiO films commonly used in p-DSSCs. We have measured the dependence of Voc on the illumination intensity to estimate the maximum obtainable Voc from the CuGaO2-based p-DSSCs. Excitingly, a saturation photovoltage of 464 mV has been observed when a polypyridyl Co(3+/2+)(dtb-bpy) electrolyte was used. Under 1 Sun AM 1.5 illumination, a Voc of 357 mV has been achieved. These are among the highest values that have been reported for p-DSSCs.


Nature Communications | 2014

Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging.

Mingzhe Yu; Xiaodi Ren; Lu Ma; Yiying Wu

With a high theoretical specific energy, the non-aqueous rechargeable lithium-oxygen battery is a promising next-generation energy storage technique. However, the large charging overpotential remains a challenge due to the difficulty in electrochemically oxidizing the insulating lithium peroxide. Recently, a redox shuttle has been introduced into the electrolyte to chemically oxidize lithium peroxide. Here, we report the use of a triiodide/iodide redox shuttle to couple a built-in dye-sensitized titanium dioxide photoelectrode with the oxygen electrode for the photoassisted charging of a lithium-oxygen battery. On charging under illumination, triiodide ions are generated on the photoelectrode, and subsequently oxidize lithium peroxide. Due to the contribution of the photovoltage, the charging overpotential is greatly reduced. The use of a redox shuttle to couple a photoelectrode and an oxygen electrode offers a unique strategy to address the overpotential issue of non-aqueous lithium-oxygen batteries and also a distinct approach for integrating solar cells and batteries.


Journal of the American Chemical Society | 2015

Aqueous Lithium–Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy

Mingzhe Yu; William D. McCulloch; Damian R. Beauchamp; Zhongjie Huang; Xiaodi Ren; Yiying Wu

Integrating both photoelectric-conversion and energy-storage functions into one device allows for the more efficient solar energy usage. Here we demonstrate the concept of an aqueous lithium-iodine (Li-I) solar flow battery (SFB) by incorporation of a built-in dye-sensitized TiO2 photoelectrode in a Li-I redox flow battery via linkage of an I3(-)/I(-) based catholyte, for the simultaneous conversion and storage of solar energy. During the photoassisted charging process, I(-) ions are photoelectrochemically oxidized to I3(-), harvesting solar energy and storing it as chemical energy. The Li-I SFB can be charged at a voltage of 2.90 V under 1 sun AM 1.5 illumination, which is lower than its discharging voltage of 3.30 V. The charging voltage reduction translates to energy savings of close to 20% compared to conventional Li-I batteries. This concept also serves as a guiding design that can be extended to other metal-redox flow battery systems.


Angewandte Chemie | 2015

Dimeric [Mo2S12]2− Cluster: A Molecular Analogue of MoS2 Edges for Superior Hydrogen‐Evolution Electrocatalysis

Zhongjie Huang; Wenjia Luo; Lu Ma; Mingzhe Yu; Xiaodi Ren; Mingfu He; Shane M. Polen; Kevin A. Click; Benjamin R. Garrett; Jun Lu; Khalil Amine; Christopher M. Hadad; Weilin Chen; Aravind Asthagiri; Yiying Wu

Proton reduction is one of the most fundamental and important reactions in nature. MoS2 edges have been identified as the active sites for hydrogen evolution reaction (HER) electrocatalysis. Designing molecular mimics of MoS2 edge sites is an attractive strategy to understand the underlying catalytic mechanism of different edge sites and improve their activities. Herein we report a dimeric molecular analogue [Mo2 S12 ](2-) , as the smallest unit possessing both the terminal and bridging disulfide ligands. Our electrochemical tests show that [Mo2 S12 ](2-) is a superior heterogeneous HER catalyst under acidic conditions. Computations suggest that the bridging disulfide ligand of [Mo2 S12 ](2-) exhibits a hydrogen adsorption free energy near zero (-0.05 eV). This work helps shed light on the rational design of HER catalysts and biomimetics of hydrogen-evolving enzymes.


ACS Applied Materials & Interfaces | 2014

Understanding Side Reactions in K–O2 Batteries for Improved Cycle Life

Xiaodi Ren; Kah Chun Lau; Mingzhe Yu; Xuanxuan Bi; Eric Kreidler; Larry A. Curtiss; Yiying Wu

Superoxide based metal-air (or metal-oxygen) batteries, including potassium and sodium-oxygen batteries, have emerged as promising alternative chemistries in the metal-air battery family because of much improved round-trip efficiencies (>90%). In order to improve the cycle life of these batteries, it is crucial to understand and control the side reactions between the electrodes and the electrolyte. For potassium-oxygen batteries using ether-based electrolytes, the side reactions on the potassium anode have been identified as the main cause of battery failure. The composition of the side products formed on the anode, including some reaction intermediates, have been identified and quantified. Combined experimental studies and density functional theory (DFT) calculations show the side reactions are likely driven by the interaction of potassium with ether molecules and the crossover of oxygen from the cathode. To inhibit these side reactions, the incorporation of a polymeric potassium ion selective membrane (Nafion-K(+)) as a battery separator is demonstrated that significantly improves the battery cycle life. The K-O2 battery with the Nafion-K(+) separator can be discharged and charged for more than 40 cycles without increases in charging overpotential.


Journal of Materials Chemistry | 2016

Solar-powered electrochemical energy storage: an alternative to solar fuels

Mingzhe Yu; William D. McCulloch; Zhongjie Huang; Brittany B. Trang; Jun Lu; Khalil Amine; Yiying Wu

Because of the intermittent nature of solar radiation, being able to simultaneously convert and store solar energy is a significant advance for efficiently harnessing solar energy. Solar fuels have already been recognized as a promising method towards this goal and have attracted tremendous research interest recently. Alternatively, this goal can also be achieved by using the solar-powered electrochemical energy storage (SPEES) strategy, which integrates a photoelectrochemical cell and an electrochemical cell into a single device. The integrated device is able to harvest solar energy and store it in situ within the device via a photocharging process and also distribute the energy as electric power when needed. This essay reviews the past SPEES research and analyzes its future prospects with a special emphasis on chemical design and material choices. We hope that the article will help draw more research attention to this field and stimulate additional exciting investigations toward more efficient solar energy utilization.


Inorganic Chemistry | 2014

Understanding the Crystallization Mechanism of Delafossite CuGaO2 for Controlled Hydrothermal Synthesis of Nanoparticles and Nanoplates

Mingzhe Yu; Thomas I. Draskovic; Yiying Wu

The delafossite CuGaO2 is an important p-type transparent conducting oxide for both fundamental science and industrial applications. An emerging application is for p-type dye-sensitized solar cells. Obtaining delafossite CuGaO2 nanoparticles is challenging but desirable for efficient dye loading. In this work, the phase formation and crystal growth mechanism of delafossite CuGaO2 under low-temperature (<250 °C) hydrothermal conditions are systematically studied. The stabilization of Cu(I) cations in aqueous solution and the controlling of the hydrolysis of Ga(III) species are two crucial factors that determine the phase formation. The oriented attachment (OA) growth is proposed as the crystal growth mechanism to explain the formation of large CuGaO2 nanoplates. Importantly, by suppressing this OA process, delafossite CuGaO2 nanoparticles that are 20 nm in size were successfully synthesized for the first time. Moreover, considering the structural and chemical similarities between the Cu-based delafossite series compounds, the understanding of the hydrothermal chemistry and crystallization mechanism of CuGaO2 should also benefit syntheses of other similar delafossites such as CuAlO2 and CuScO2.


Angewandte Chemie | 2015

Dye-controlled interfacial electron transfer for high-current indium tin oxide photocathodes.

Zhongjie Huang; Mingfu He; Mingzhe Yu; Kevin A. Click; Damian R. Beauchamp; Yiying Wu

Efficient sensitized photocathodes are highly desired for solar fuels and tandem solar cells, yet the development is hindered by the scarcity of suitable p-type semiconductors. The generation of high cathodic photocurrents by sensitizing a degenerate n-type semiconductor (tin-doped indium oxide; ITO) is reported. The sensitized mesoporous ITO electrodes deliver cathodic photocurrents of up to 5.96±0.19 mA cm(-2), which are close to the highest record in conventional p-type sensitized photocathodes. This is realized by the rational selection of dyes with appropriate energy alignments with ITO. The energy level alignment between the highest occupied molecular orbital of the sensitizer and the conduction band of ITO is crucial for efficient hole injection. Transient absorption spectroscopy studies demonstrate that the cathodic photocurrent results from reduction of the photoexcited sensitizer by free electrons in ITO. Our results reveal a new perspective toward the selection of electrode materials for sensitized photocathodes.


Applied Physics Letters | 2014

Epitaxial growth of large area single-crystalline few-layer MoS2 with high space charge mobility of 192 cm2 V−1 s−1

Lu Ma; Digbijoy N. Nath; E. Lee; Choong Hee Lee; Mingzhe Yu; A. R. Arehart; Siddharth Rajan; Yiying Wu

We report on the vapor-solid growth of single crystalline few-layer MoS2 films on (0001)-oriented sapphire with excellent structural and electrical properties over centimeter length scale. High-resolution X-ray diffraction scans indicated that the films had good out-of-plane ordering and epitaxial registry. A carrier density of ~2 x 1011 cm-2 and a room temperature mobility of 192 cm2/Vs were extracted from space-charge limited transport regime in the films. The electron mobility was found to exhibit in-plane anisotropy with a ratio of ~ 1.8. Theoretical estimates of the temperature-dependent electron mobility including optical phonon, acoustic deformation potential and remote ionized impurity scattering were found to satisfactorily match the measured data. The synthesis approach reported here demonstrates the feasibility of device quality few-layer MoS2 films with excellent uniformity and high quality.


Inorganic Chemistry | 2015

2H-CuScO2 Prepared by Low-Temperature Hydrothermal Methods and Post-Annealing Effects on Optical and Photoelectrochemical Properties

Thomas I. Draskovic; Mingzhe Yu; Yiying Wu

The delafossite structured CuScO2 is a p-type, wide band gap oxide that has been shown to support significant oxygen intercalation, leading to darkened color and increased conductivity. Control of this oxidation proves difficult by the conventional high-temperature solid-state syntheses. In addition, a pure hexagonal (2H) or rhombohedral (3R) polytype of CuScO2 requires careful control of synthetic parameters or intentional doping. Lower-temperature hydrothermal syntheses have thus far led to only a mixed 2H/3R product. Herein, control of hydrothermal conditions with the consideration of copper and scandium hydrolysis led to the synthesis of light beige, hierarchically structured particles of 2H-CuScO2. Absorption of the particles in the visible range was found to increase upon annealing of the sample in air, most likely due to the Cu(II) formation from oxygen interstitials. X-ray photoelectron spectroscopy confirmed purely Cu(I) in the as-synthesized 2H-CuScO2 and increased Cu(II) amounts upon annealing. Oxidation of the samples also led to shifts of the Fermi level toward the valence band as observed by increases in the measured flat band potentials versus normal hydrogen electrode, confirming increased hole carrier densities.

Collaboration


Dive into the Mingzhe Yu's collaboration.

Top Co-Authors

Avatar

Yiying Wu

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lu Ma

Ohio State University

View shared research outputs
Top Co-Authors

Avatar

Mingfu He

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge