Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mingzhou Li is active.

Publication


Featured researches published by Mingzhou Li.


Nature Genetics | 2013

Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars

Mingzhou Li; Shilin Tian; Guangyu Zhou; Ying Li; Yuan Zhang; Tao Wang; Carol K L Yeung; Lei Chen; Jideng Ma; Jinbo Zhang; Anan Jiang; Ji Li; Chaowei Zhou; Jie Zhang; Yingkai Liu; Xiaoqing Sun; Hongwei Zhao; Zexiong Niu; Pinger Lou; Lingjin Xian; Xiaoyong Shen; Shaoqing Liu; Shunhua Zhang; Mingwang Zhang; Surong Shuai; Lin Bai; Guoqing Tang; Haifeng Liu; Yanzhi Jiang; Miaomiao Mai

We report the sequencing at 131× coverage, de novo assembly and analyses of the genome of a female Tibetan wild boar. We also resequenced the whole genomes of 30 Tibetan wild boars from six major distributed locations and 18 geographically related pigs in China. We characterized genetic diversity, population structure and patterns of evolution. We searched for genomic regions under selection, which includes genes that are involved in hypoxia, olfaction, energy metabolism and drug response. Comparing the genome of Tibetan wild boar with those of neighboring Chinese domestic pigs further showed the impact of thousands of years of artificial selection and different signatures of selection in wild boar and domestic pig. We also report genetic adaptations in Tibetan wild boar that are associated with high altitudes and characterize the genetic basis of increased salivation in domestic pig.


PLOS ONE | 2010

MicroRNAome of Porcine Pre- and Postnatal Development

Mingzhou Li; Youlin Xia; Yiren Gu; Kai Zhang; Qiulei Lang; Lei Chen; Jiuqiang Guan; Zonggang Luo; Haosi Chen; Yang Li; Qinghai Li; Xiang Li; An’an Jiang; Surong Shuai; Jinyong Wang; Qi Zhu; Xiaochuan Zhou; Xiaolian Gao; Xuewei Li

The domestic pig is of enormous agricultural significance and valuable models for many human diseases. Information concerning the pig microRNAome (miRNAome) has been long overdue and elucidation of this information will permit an atlas of microRNA (miRNA) regulation functions and networks to be constructed. Here we performed a comprehensive search for porcine miRNAs on ten small RNA sequencing libraries prepared from a mixture of tissues obtained during the entire pig lifetime, from the fetal period through adulthood. The sequencing results were analyzed using mammalian miRNAs, the precursor hairpins (pre-miRNAs) and the first release of the high-coverage porcine genome assembly (Sscrofa9, April 2009) and the available expressed sequence tag (EST) sequences. Our results extend the repertoire of pig miRNAome to 867 pre-miRNAs (623 with genomic coordinates) encoding for 1,004 miRNAs, of which 777 are unique. We preformed real-time quantitative PCR (q-PCR) experiments for selected 30 miRNAs in 47 tissue-specific samples and found agreement between the sequencing and q-PCR data. This broad survey provides detailed information about multiple variants of mature sequences, precursors, chromosomal organization, development-specific expression, and conservation patterns. Our data mining produced a broad view of the pig miRNAome, consisting of miRNAs and isomiRs and a wealth of information of pig miRNA characteristics. These results are prelude to the advancement in pig biology as well the use of pigs as model organism for human biological and biomedical studies.


Nature Genetics | 2014

Whole-genome sequencing of the snub-nosed monkey provides insights into folivory and evolutionary history

Xuming Zhou; Boshi Wang; Qi Pan; Jinbo Zhang; Sudhir Kumar; Xiaoqing Sun; Zhijin Liu; Huijuan Pan; Yu Lin; Guangjian Liu; Wei Zhan; Mingzhou Li; Baoping Ren; Xingyong Ma; Hang Ruan; Chen Cheng; Dawei Wang; Fanglei Shi; Yuanyuan Hui; Yujing Tao; Chenglin Zhang; Pingfen Zhu; Zuo-Fu Xiang; Wenkai Jiang; Jiang Chang; Hailong Wang; Zhisheng Cao; Zhi Jiang; Baoguo Li; Guang Yang

Colobines are a unique group of Old World monkeys that principally eat leaves and seeds rather than fruits and insects. We report the sequencing at 146× coverage, de novo assembly and analyses of the genome of a male golden snub-nosed monkey (Rhinopithecus roxellana) and resequencing at 30× coverage of three related species (Rhinopithecus bieti, Rhinopithecus brelichi and Rhinopithecus strykeri). Comparative analyses showed that Asian colobines have an enhanced ability to derive energy from fatty acids and to degrade xenobiotics. We found evidence for functional evolution in the colobine RNASE1 gene, encoding a key secretory RNase that digests the high concentrations of bacterial RNA derived from symbiotic microflora. Demographic reconstructions indicated that the profile of ancient effective population sizes for R. roxellana more closely resembles that of giant panda rather than its congeners. These findings offer new insights into the dietary adaptations and evolutionary history of colobine primates.


International Journal of Molecular Sciences | 2011

MicroRNAs miR-27a and miR-143 Regulate Porcine Adipocyte Lipid Metabolism

Tao Wang; Mingzhou Li; Jiuqiang Guan; Penghao Li; Huiyu Wang; Yanqin Guo; Surong Shuai; Xuewei Li

MicroRNAs (miRNAs) are non-coding small RNAs that play roles in regulating gene expression. Some miRNAs have been classed as epigenetic regulators of metabolism and energy homeostasis. Previous reports indicated that the miRNAs miR-27a and miR-143 were involved in lipid metabolism in human and rodents. To determine the roles of porcine miR-27a and miR-143 in adipocyte lipid metabolism, porcine adipocytes were cultured and allowed to induce differentiation for 10 days. The lipid-filled adipocytes were then transfected with miRNA mimics and inhibitors. We measured how the indicators of adipogenesis and adipolysis in porcine adipocytes were affected by the over-expression and by the inhibition of both miR-27a and miR-143. The results indicated that the over-expression of miR-27a could accelerate adipolysis releasing significantly more glycerol and free fatty acids than the negative control (P < 0.001), while the mimic of miR-143 expression, promoted adipogenesis by accumulating more triglycerides (P < 0.001) in the adipocytes. In addition, we demonstrated that there was good correlation (r > 0.98, P < 0.001) between the indicators of adipolysis in cell lysates and in the culture medium.


Scientific Reports | 2015

Whole-genome sequencing of Berkshire (European native pig) provides insights into its origin and domestication

Mingzhou Li; Shilin Tian; Carol K L Yeung; Xuehong Meng; Qianzi Tang; Lili Niu; Xun Wang; Long Jin; Jideng Ma; Keren Long; Chaowei Zhou; Yinchuan Cao; Li Zhu; Lin Bai; Guoqing Tang; Yiren Gu; An’an Jiang; Xuewei Li; Ruiqiang Li

Domesticated organisms have experienced strong selective pressures directed at genes or genomic regions controlling traits of biological, agricultural or medical importance. The genome of native and domesticated pigs provide a unique opportunity for tracing the history of domestication and identifying signatures of artificial selection. Here we used whole-genome sequencing to explore the genetic relationships among the European native pig Berkshire and breeds that are distributed worldwide, and to identify genomic footprints left by selection during the domestication of Berkshire. Numerous nonsynonymous SNPs-containing genes fall into olfactory-related categories, which are part of a rapidly evolving superfamily in the mammalian genome. Phylogenetic analyses revealed a deep phylogenetic split between European and Asian pigs rather than between domestic and wild pigs. Admixture analysis exhibited higher portion of Chinese genetic material for the Berkshire pigs, which is consistent with the historical record regarding its origin. Selective sweep analyses revealed strong signatures of selection affecting genomic regions that harbor genes underlying economic traits such as disease resistance, pork yield, fertility, tameness and body length. These discoveries confirmed the history of origin of Berkshire pig by genome-wide analysis and illustrate how domestication has shaped the patterns of genetic variation.


BMC Molecular Biology | 2013

Identification of differences in microRNA transcriptomes between porcine oxidative and glycolytic skeletal muscles.

Yingkai Liu; Mingzhou Li; Jideng Ma; Jie Zhang; Chaowei Zhou; Tao Wang; Xiaolian Gao; Xuewei Li

BackgroundMicroRNAs (miRNAs) are a type of non-coding small RNA ~22 nucleotides in length that regulate the expression of protein coding genes at the post-transcriptional level. Glycolytic and oxidative myofibers, the two main types of skeletal muscles, play important roles in metabolic health as well as in meat quality and production in the pig industry. Previous expression profile studies of different skeletal muscle types have focused on these aspects of mRNA and proteins; nonetheless, an explanation of the miRNA transcriptome differences between these two distinct muscles types is long overdue.ResultsHerein, we present a comprehensive analysis of miRNA expression profiling between the porcine longissimus doris muscle (LDM) and psoas major muscle (PMM) using a deep sequencing approach. We generated a total of 16.62 M (LDM) and 18.46 M (PMM) counts, which produced 15.22 M and 17.52 M mappable sequences, respectively, and identified 114 conserved miRNAs and 89 novel miRNA*s. Of 668 unique miRNAs, 349 (52.25%) were co-expressed, of which 173 showed significant differences (P < 0.01) between the two muscle types. Muscle-specific miR-1-3p showed high expression levels in both libraries (LDM, 32.01%; PMM, 20.15%), and miRNAs that potentially affect metabolic pathways (such as the miR-133 and -23) showed significant differences between the two libraries, indicating that the two skeletal muscle types shared mainly muscle-specific miRNAs but expressed at distinct levels according to their metabolic needs. In addition, an analysis of the Gene Ontology (GO) terms and KEGG pathway associated with the predicted target genes of the differentially expressed miRNAs revealed that the target protein coding genes of highly expressed miRNAs are mainly involved in skeletal muscle structural development, regeneration, cell cycle progression, and the regulation of cell motility.ConclusionOur study indicates that miRNAs play essential roles in the phenotypic variations observed in different muscle fiber types.


Science China-life Sciences | 2008

Expression profiling analysis for genes related to meat quality and carcass traits during postnatal development of backfat in two pig breeds

Mingzhou Li; Li Zhu; Xuewei Li; Surong Shuai; Xiaokun Teng; Huasheng Xiao; Qiang Li; Lei Chen; Yujiao Guo; Jinyong Wang

The competitive equilibrium of fatty acid biosynthesis and oxidation in vivo determines porcine subcutaneous fat thickness (SFT) and intramuscular fat (IMF) content. Obese and lean-type pig breeds show obvious differences in adipose deposition; however, the molecular mechanism underlying this phenotypic variation remains unclear. We used pathway-focused oligo microarray studies to examine the expression changes of 140 genes associated with meat quality and carcass traits in backfat at five growth stages (1–5 months) of Landrace (a leaner, Western breed) and Taihu pigs (a fatty, indigenous, Chinese breed). Variance analysis (ANOVA) revealed that differences in the expression of 25 genes in Landrace pigs were significant (FDR adjusted permutation, P<0.05) among 5 growth stages. Gene class test (GCT) indicated that a gene-group was very significant between 2 pig breeds across 5 growth stages (PErmineJ<0.01), which consisted of 23 genes encoding enzymes and regulatory proteins associated with lipid and steroid metabolism. These findings suggest that the distinct differences in fat deposition ability between Landrace and Taihu pigs may closely correlate with the expression changes of these genes. Clustering analysis revealed a very high level of significance (FDR adjusted, P<0.01) for 2 gene expression patterns in Landrace pigs and a high level of significance (FDR adjusted, P<0.05) for 2 gene expression patterns in Taihu pigs. Also, expression patterns of genes were more diversified in Taihu pigs than those in Landrace pigs, which suggests that the regulatory mechanism of micro-effect polygenes in adipocytes may be more complex in Taihu pigs than in Landrace pigs. Based on a dynamic Bayesian network (DBN) model, gene regulatory networks (GRNs) were reconstructed from time-series data for each pig breed. These two GRNs initially revealed the distinct differences in physiological and biochemical aspects of adipose metabolism between the two pig breeds; from these results, some potential key genes could be identified. Quantitative, real-time RT-PCR (QRT-PCR) was used to verify the microarray data for five modulated genes, and a good correlation between the two measures of expression was observed for both 2 pig breeds at different growth stages (R=0.874±0.071). These results highlight some possible candidate genes for porcine fat characteristics and provide some data on which to base further study of the molecular basis of adipose metabolism.


PLOS ONE | 2013

Intrinsic Features in MicroRNA Transcriptomes Link Porcine Visceral Rather than Subcutaneous Adipose Tissues to Metabolic Risk

Jideng Ma; Zhi Jiang; Shen He; Yingkai Liu; Lei Chen; Keren Long; Long Jin; An’an Jiang; Li Zhu; Jinyong Wang; Mingzhou Li; Xuewei Li

MicroRNAs (miRNAs) are non-coding small RNA ∼22 nucleotides in length that can regulate the expression of a wide range of coding genes at the post-transcriptional level. Visceral adipose tissues (VATs) and subcutaneous adipose tissues (SATs), the two main fat compartments in mammals, are anatomically, physiologically, metabolically, and clinically distinct. Various studies of adipose tissues have focused mainly on DNA methylation, and mRNA and protein expression, nonetheless little research sheds directly light on the miRNA transcriptome differences between these two distinct adipose tissue types. Here, we present a comprehensive investigation of miRNA transcriptomes across six variant porcine adipose tissues by small RNA-sequencing. We identified 219 known porcine miRNAs, 97 novel miRNA*s, and 124 miRNAs that are conserved to other mammals. A set of universally abundant miRNAs (i.e., miR-148a-3p, miR-143-3p, miR-27b-3p, miR-let-7a-1-5p, and miR-let-7f-5p) across the distinct adipose tissues was found. This set of miRNAs may play important housekeeping roles that are involved in adipogenesis. Clustering analysis indicated significant variations in miRNA expression between the VATs and SATs, and highlighted the role of the greater omentum in responding to potential metabolic risk because of the observed enrichment in this tissue of the immune- and inflammation-related miRNAs, such as the members of miR-17-92 cluster and miR-181 family. Differential expression of the miRNAs between the VATs and SATs, and miRNA target prediction analysis revealed that the VATs-specific enriched miRNAs were associated mainly with immune and inflammation responses. In summary, the differences of miRNA expression between the VATs and SATs revealed some of their intrinsic differences and indicated that the VATs might be closely associated with increased risk of metabolic disorders.


Animal Science Journal | 2014

The comparison of energy metabolism and meat quality among three pig breeds

Linyuan Shen; Huaigang Lei; Shunhua Zhang; Xuewei Li; Mingzhou Li; Xiaobing Jiang; Kangping Zhu; Li Zhu

The objective of this study was to evaluate the effects of muscle-fibre types and hormones on glycolytic potential and meat quality traits and their association with glycolytic-related gene expression in three different altitude pig breeds. The pig breeds studied were the Tibetan pig (TP, high altitude), the Liang-Shan pig (LSP, middle altitude) and the Duroc×(Landrace×Yorkshire) cross (DLY, flatland). The results indicated that TP and LSP had better meat quality than DLY (P<0.01). The glycolytic potential (GP) increased in the order of TP<LSP<DLY and decreased with time post mortem. DLY had higher glucagon and epinephrine contents than LSP and TP (P<0.01). The proportions of myosin heavy chain muscle fibers type I in the Longissimus dorsi increased in the order of DLY<TP<LSP, whereas the proportion of type IIb increased in the order of TP<LSP<DLY. The expression of gene PKM2 played an important role in the glycolysis rate of the different genotypes. Compared with the other two pig breeds, the high-altitude breeds had better meat quality attributes, which may be due to the slow rate of glycolysis metabolism.


International Journal of Molecular Sciences | 2012

Genome-Wide DNA Methylation Changes between the Superficial and Deep Backfat Tissues of the Pig

Mingzhou Li; Tao Wang; Honglong Wu; Jie Zhang; Chaowei Zhou; Anan Jiang; Ruiqiang Li; Xuewei Li

Adipose tissue is not only a storage organ involved in fuel metabolism, but also an endocrine organ involved in the regulation of insulin sensitivity, thermogenesis, immunity, and inflammation. There are anatomical, cellular, molecular and physiological differences among adipose tissues deposited in different body sites. However, current understanding of the intrinsic differences between the sub-compartments of the subcutaneous adipose tissue remains rudimentary. Here, we analyzed the genome-wide DNA methylation differences between the porcine superficial and deep backfat tissues using methylated DNA immunoprecipitation combined with high-throughput sequencing. We show that the genes with differentially methylated regions in their promoter are mainly involved in the processes of “lipid metabolism” and “regulation of immune-related cytokines”. Compared with the deep backfat tissue, the promoters of genes related to the ‘positive regulation of cytokine production’ were significantly hypermethylated in the superficial backfat tissue, which reflects the intrinsic functional and metabolic differences between the sub-compartments of the subcutaneous adipose tissue. This study provides epigenetic evidence for functionally relevant methylation differences between different layers of porcine backfat tissues.

Collaboration


Dive into the Mingzhou Li's collaboration.

Top Co-Authors

Avatar

Xuewei Li

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Li Zhu

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jideng Ma

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Long Jin

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qianzi Tang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Anan Jiang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Guoqing Tang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yanzhi Jiang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xun Wang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shilin Tian

Sichuan Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge