Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Minh D. To is active.

Publication


Featured researches published by Minh D. To.


Nature | 2009

Genetic architecture of mouse skin inflammation and tumour susceptibility

David A. Quigley; Minh D. To; Jesus Perez-Losada; Facundo G. Pelorosso; Jian-Hua Mao; Hiroki Nagase; David Ginzinger; Allan Balmain

Germline polymorphisms in model organisms and humans influence susceptibility to complex trait diseases such as inflammation and cancer. Mice of the Mus spretus species are resistant to tumour development, and crosses between M. spretus and susceptible Mus musculus strains have been used to map locations of genetic variants that contribute to skin cancer susceptibility. We have integrated germline polymorphisms with gene expression in normal skin from a M. musculus × M. spretus backcross to generate a network view of the gene expression architecture of mouse skin. Here we demonstrate how this approach identifies expression motifs that contribute to tissue organization and biological functions related to inflammation, haematopoiesis, cell cycle control and tumour susceptibility. Motifs associated with inflammation, epidermal barrier function and proliferation are differentially regulated in backcross mice susceptible or resistant to tumour development. The intestinal stem cell marker Lgr5 is identified as a candidate master regulator of the hair follicle, and the vitamin D receptor (Vdr) is linked to coordinated control of epidermal barrier function, inflammation and tumour susceptibility.


Nature Genetics | 2008

Kras regulatory elements and exon 4A determine mutation specificity in lung cancer

Minh D. To; Christine Wong; Anthony N. Karnezis; Reyno Del Rosario; Roberto Di Lauro; Allan Balmain

Kras is the most frequently mutated ras family member in lung carcinomas, whereas Hras mutations are common in tumors from stratified epithelia such as the skin. Using a Hras knock-in mouse model, we demonstrate that specificity for Kras mutations in lung and Hras mutations in skin tumors is determined by local regulatory elements in the target ras genes. Although the Kras 4A isoform is dispensable for mouse development, it is the most important isoform for lung carcinogenesis in vivo and for the inhibitory effect of wild-type (WT) Kras on the mutant allele. Kras 4A expression is detected in a subpopulation of normal lung epithelial cells, but at very low levels in lung tumors, suggesting that it may not be required for tumor progression. The two Kras isoforms undergo different post-translational modifications; therefore, these findings can have implications for the design of therapeutic strategies for inhibiting oncogenic Kras activity in human cancers.


Nature Genetics | 2006

A functional switch from lung cancer resistance to susceptibility at the Pas1 locus in Kras2LA2 mice.

Minh D. To; Jesus Perez-Losada; Jian-Hua Mao; Jeff Hsu; Tyler Jacks; Allan Balmain

Pulmonary adenoma susceptibility 1 (Pas1) is the major mouse lung cancer susceptibility locus on chromosome 6 (ref. 1). Kras2 is a common target of somatic mutation in chemically induced mouse lung tumors and is a candidate Pas1 gene. M. spretus mice (SPRET/Ei) carry a Pas1 resistance haplotype for chemically induced lung tumors. We demonstrate that the SPRET/Ei Pas1 allele is switched from resistance to susceptibility by fixation of the parental origin of the mutant Kras2 allele. This switch correlates with low expression of endogenous Kras2 in SPRET/Ei. We propose that the Pas1 modifier effect is due to Kras2, and that a sensitive balance between the expression levels of wild-type and mutant alleles determines lung tumor susceptibility. These data demonstrate that cancer predisposition should also be considered in the context of somatic events and could have major implications for the design of human association studies to identify cancer susceptibility genes.


Genome Biology | 2011

Network analysis of skin tumor progression identifies a rewired genetic architecture affecting inflammation and tumor susceptibility

David A. Quigley; Minh D. To; Il-Jin Kim; Kevin K. Lin; Donna G. Albertson; Jonas Sjölund; Jesus Perez-Losada; Allan Balmain

BackgroundGermline polymorphisms can influence gene expression networks in normal mammalian tissues and can affect disease susceptibility. We and others have shown that analysis of this genetic architecture can identify single genes and whole pathways that influence complex traits, including inflammation and cancer susceptibility. Whether germline variants affect gene expression in tumors that have undergone somatic alterations, and the extent to which these variants influence tumor progression, is unknown.ResultsUsing an integrated linkage and genomic analysis of a mouse model of skin cancer that produces both benign tumors and malignant carcinomas, we document major changes in germline control of gene expression during skin tumor development resulting from cell selection, somatic genetic events, and changes in the tumor microenvironment. The number of significant expression quantitative trait loci (eQTL) is progressively reduced in benign and malignant skin tumors when compared to normal skin. However, novel tumor-specific eQTL are detected for several genes associated with tumor susceptibility, including IL18 (Il18), Granzyme E (Gzme), Sprouty homolog 2 (Spry2), and Mitogen-activated protein kinase kinase 4 (Map2k4).ConclusionsWe conclude that the genetic architecture is substantially altered in tumors, and that eQTL analysis of tumors can identify host factors that influence the tumor microenvironment, mitogen-activated protein (MAP) kinase signaling, and cancer susceptibility.


Genes & Development | 2013

Inflammation and Hras signaling control epithelial–mesenchymal transition during skin tumor progression

Christine Wong; Jennifer S. Yu; David A. Quigley; Minh D. To; Kuang-Yu Jen; Phillips Y. Huang; Reyno Del Rosario; Allan Balmain

Epithelial-mesenchymal transition (EMT) is thought to be an important, possibly essential, component of the process of tumor dissemination and metastasis. About 20%-30% of Hras mutant mouse skin carcinomas induced by chemical initiation/promotion protocols have undergone EMT. Reduced exposure to TPA-induced chronic inflammation causes a dramatic reduction in classical papillomas and squamous cell carcinomas (SCCs), but the mice still develop highly invasive carcinomas with EMT properties, reduced levels of Hras and Egfr signaling, and frequent Ink4/Arf deletions. Deletion of Hras from the mouse germline also leads to a strong reduction in squamous tumor development, but tumors now acquire activating Kras mutations and exhibit more aggressive metastatic properties. We propose that invasive carcinomas can arise by different genetic and biological routes dependent on exposure to chronic inflammation and possibly from different target cell populations within the skin. Our data have implications for the use of inhibitors of inflammation or of Ras/Egfr pathway signaling for prevention or treatment of invasive cancers.


Oncogene | 2013

Interactions between wild-type and mutant Ras genes in lung and skin carcinogenesis.

Minh D. To; Reyno Del Rosario; Peter M. K. Westcott; Karl Luke Banta; Allan Balmain

Ras oncogenes (Hras, Kras and Nras) are important drivers of carcinogenesis. However, tumors with Ras mutations often show loss of the corresponding wild-type (WT) allele, suggesting that proto-oncogenic forms of Ras can function as a suppressor of carcinogenesis. In vitro studies also suggest that WT Ras proteins can suppress the tumorigenic properties of alternate mutant Ras family members, but in vivo evidence for these heterologous interactions is lacking. We have investigated the genetic interactions between different combinations of mutant and WT Ras alleles in vivo using carcinogen-induced lung and skin carcinogenesis in mice with targeted deletion of different Ras family members. The major suppressor effect of WT Kras is observed only in mutant Kras-driven lung carcinogenesis, where loss of one Kras allele led to increased tumor number and size. Deletion of one Hras allele dramatically reduced the number of skin papillomas with Hras mutations, consistent with Hras as the major target of mutation in these tumors. However, skin carcinoma numbers were very similar, suggesting that WT Hras functions as a suppressor of progression from papillomas to invasive squamous carcinomas. In the skin, the Kras proto-oncogene functions cooperatively with mutant Hras to promote papilloma development, although the effect is relatively small. In contrast, the Hras proto-oncogene attenuated the activity of mutant Kras in lung carcinogenesis. Interestingly, loss of Nras increased the number of mutant Kras-induced lung tumors, but decreased the number of mutant Hras-induced skin papillomas. These results show that the strongest suppressor effects of WT Ras are only seen in the context of mutation of the cognate Ras protein, and only relatively weak effects are detected on tumor development induced by mutations in alternative family members. The data also underscore the complex and context-dependent nature of interactions between proto-oncogenic and oncogenic forms of different Ras family members during tumor development.


Nature Communications | 2013

Rewiring of human lung cell lineage and mitotic networks in lung adenocarcinomas

Il-Jin Kim; David A. Quigley; Minh D. To; Patrick Pham; Kevin K. Lin; Brian Jo; Kuang-Yu Jen; Dan J. Raz; Jae Kim; Jian-Hua Mao; David M. Jablons; Allan Balmain

Analysis of gene expression patterns in normal tissues and their perturbations in tumors can help to identify the functional roles of oncogenes or tumor suppressors and identify potential new therapeutic targets. Here, gene expression correlation networks were derived from 92 normal human lung samples and patient-matched adenocarcinomas. The networks from normal lung show that NKX2-1 is linked to the alveolar type 2 lineage, and identify PEBP4 as a novel marker expressed in alveolar type 2 cells. Differential correlation analysis shows that the NKX2-1 network in tumors includes pathways associated with glutamate metabolism, and identifies Vaccinia-related kinase (VRK1) as a potential drug target in a tumor-specific mitotic network. We show that VRK1 inhibition cooperates with inhibition of PARP signaling to inhibit growth of lung tumor cells. Targeting of genes that are recruited into tumor mitotic networks may provide a wider therapeutic window than that seen by inhibition of known mitotic genes.


Chinese Journal of Cancer | 2013

The genetics and biology of KRAS in lung cancer.

Peter M. K. Westcott; Minh D. To

Mutational activation of KRAS is a common oncogenic event in lung cancer and other epithelial cancer types. Efforts to develop therapies that counteract the oncogenic effects of mutant KRAS have been largely unsuccessful, and cancers driven by mutant KRAS remain among the most refractory to available treatments. Studies undertaken over the past decades have produced a wealth of information regarding the clinical relevance of KRAS mutations in lung cancer. Mutant Kras-driven mouse models of cancer, together with cellular and molecular studies, have provided a deeper appreciation for the complex functions of KRAS in tumorigenesis. However, a much more thorough understanding of these complexities is needed before clinically effective therapies targeting mutant KRAS-driven cancers can be achieved.


Molecular Cancer Research | 2011

Progressive genomic instability in the FVB/Kras(LA2) mouse model of lung cancer.

Minh D. To; David A. Quigley; Jian-Hua Mao; Reyno Del Rosario; Jeff Hsu; Graeme Hodgson; Tyler Jacks; Allan Balmain

Alterations in DNA copy number contribute to the development and progression of cancers and are common in epithelial tumors. We have used array Comparative Genomic Hybridization (aCGH) to visualize DNA copy number alterations across the genomes of lung tumors in the KrasLA2 model of lung cancer. Copy number gain involving the Kras locus, as focal amplification or whole chromosome gain, is the most common alteration in these tumors and with a prevalence that increased significantly with increasing tumor size. Furthermore, Kras amplification was the only major genomic event among the smallest lung tumors, suggesting that this alteration occurs early during the development of mutant Kras-driven lung cancers. Recurring gains and deletions of other chromosomes occur progressively more frequently among larger tumors. These results are in contrast to a previous aCGH analysis of lung tumors from KrasLA2 mice on a mixed genetic background, in which relatively few DNA copy number alterations were observed regardless of tumor size. Our model features the KrasLA2 allele on the inbred FVB/N mouse strain, and in this genetic background, there is a highly statistically significant increase in level of genomic instability with increasing tumor size. These data suggest that recurring DNA copy alterations are important for tumor progression in the KrasLA2 model of lung cancer and that the requirement for these alterations may be dependent on the genetic background of the mouse strain. Mol Cancer Res; 9(10); 1339–45. ©2011 AACR.


Cell Cycle | 2005

Crosstalk Between Pten and Ras Signaling Pathways in Tumor Development

Minh D. To; Jesus Perez-Losada; Jian-Hua Mao; Allan Balmain

The Pten and Ras pathways are disrupted or activated, respectively, in a substantial proportion of cancers. Skin tumors induced by the classical two stage carcinogenesis protocols show consistent activating mutations of the H-ras gene, but in tumors from Pten heterozygous mice, the frequency of these mutations is markedly decreased, suggesting some redundancy between these pathways. Pten heterozygous mice develop more papillomas and have earlier onset of carcinomas than their control counterparts, but molecular analysis of these tumors indicated that complete loss of Pten and activation of H-ras are mutually exclusive. Pten loss is however not functionally equivalent to H-ras activation, as Pten(-/-) tumors occur earlier and are generally more aggressive. Tumors with Pten loss or H-ras activation have different biochemical properties, suggestive of alternative routes to malignancy. These findings in this mouse model have important implications for the rational design of new targeted therapies for human tumors.

Collaboration


Dive into the Minh D. To's collaboration.

Top Co-Authors

Avatar

Allan Balmain

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian-Hua Mao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Wong

California Pacific Medical Center

View shared research outputs
Top Co-Authors

Avatar

Il-Jin Kim

University of California

View shared research outputs
Top Co-Authors

Avatar

Jeff Hsu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge