Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Minh Huynh is active.

Publication


Featured researches published by Minh Huynh.


Methods in Cell Biology | 2012

Imaging fluorescently labeled complexes by means of multidimensional correlative light and transmission electron microscopy: practical considerations.

K. Kobayashi; Delfine Cheng; Minh Huynh; Kyle R. Ratinac; Pall Thordarson; Filip Braet

These days the common ground between structural biology and molecular biology continues to grow thanks to the biomolecular insights offered by correlative microscopy, even though the vision of combining insights from different imaging tools has been around for nearly four decades. The use of correlative imaging methods to dissect the cells internal structure is progressing faster than ever as shown by the boom in the number of methodological approaches available for correlative microscopy studies, each designed to address a specific scientific question. In this chapter, we will present a relatively straightforward approach to combining information from fluorescence microscopy and electron microscopy at the supramolecular level. The method combines live-cell and/or confocal laser microscopy with classical sample preparation for transmission electron microscopy (TEM), thereby allowing the integration of dynamic details of subcellular processes with insights about the organelles and molecular machinery involved. We illustrate the applicability of this multidimensional correlative microscopy approach on cultured Caco-2 colorectal cancer cells exposed to fluorescently labeled cisplatin, and discuss how these methods can deepen our understanding of key cellular processes, such as drug uptake and cell fate.


Scientific Reports | 2016

3-D EM exploration of the hepatic microarchitecture – lessons learned from large-volume in situ serial sectioning

Gerald J. Shami; Delfine Cheng; Minh Huynh; Celien Vreuls; Eddie Wisse; Filip Braet

To-date serial block-face scanning electron microscopy (SBF-SEM) dominates as the premier technique for generating three-dimensional (3-D) data of resin-embedded biological samples at an unprecedented depth volume. Given the infancy of the technique, limited literature is currently available regarding the applicability of SBF-SEM for the ultrastructural investigation of tissues. Herein, we provide a comprehensive and rigorous appraisal of five different SBF-SEM sample preparation protocols for the large-volume exploration of the hepatic microarchitecture at an unparalleled X, Y and Z resolution. In so doing, we qualitatively and quantitatively validate the use of a comprehensive SBF-SEM sample preparation protocol, based on the application of heavy metal fixatives, stains and mordanting agents. Employing the best-tested SBF-SEM approach, enabled us to assess large-volume morphometric data on murine parenchymal cells, sinusoids and bile canaliculi. Finally, we integrated the validated SBF-SEM protocol with a correlative light and electron microscopy (CLEM) approach. The combination of confocal scanning laser microscopy and SBF-SEM provided a novel way to picture subcellular detail. We appreciate that this multidimensional approach will aid the subsequent research of liver tissue under relevant experimental and disease conditions.


Cytokine | 2013

TNF-α and TGF-β synergistically stimulate elongation of human endothelial cells without transdifferentiation to smooth muscle cell phenotype

Catherine Emmanuel; Minh Huynh; Janice Matthews; Elizabeth Kelly; Hans Zoellner

We earlier reported synergy between tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) for apoptosis in human umbilical vein endothelium (HUVEC). Here, we study morphological change by circularity measurement of HUVEC surviving this cytokine induced synergistic apoptosis. Contrasting with reports by others studying bovine endothelium, HUVEC did not change morphology in response to TGF-β1. TNF-α markedly elongated cells (p<0.001) and this further increased with combination of the two cytokines (p<0.001), while elongation was accompanied by increased actin stress fibres. Transdifferentiation of HUVEC to a smooth muscle cell phenotype as reported elsewhere was excluded in the current study.


The Journal of Pathology | 2012

Membrane and cytoplasmic marker exchange between malignant neoplastic cells and fibroblasts via intermittent contact: increased tumour cell diversity independent of genetic change

Manu S. David; Minh Huynh; Elizabeth Kelly; Helen Rizos; Hedley Coleman; Glynn Rogers; Hans Zoellner

We previously demonstrated that human osteosarcoma cells (SAOS‐2) induce contact‐dependent apoptosis in endothelium, and expected similar apoptosis in human gingival fibroblasts (h‐GF) using SAOS‐2 alkaline phosphatase (AP) to identify cells. However, h‐GF apoptosis did not occur, despite reduction in AP‐negative h‐GF number (p < 0.01) and enhancement of this by h‐GF TNFα pretreatment (p < 0.01). We suggest that TNFα‐enhanced transfer of membrane AP from SAOS‐2 to h‐GF would explain these data. This idea was investigated using fluorescence prelabelled cells and confocal laser scanning microscopy. Co‐cultures of membrane‐labelled h‐GF (marker‐DiO) and SAOS‐2 (marker‐DiD) generated dual‐labelled cells, primarily at the expense of single labelled h‐GF (p < 0.001), suggesting predominant membrane transfer from SAOS‐2 to h‐GF. However, opposite directional transfer predominated when membrane labels were reversed; SAOS‐2 further expressed green fluorescent protein (GFP) in cytoplasm and nuclei, and h‐GF additionally bore nuclear label (Syto59) (p < 0.001). Cytoplasmic exchange was investigated using h‐GF prelabelled with cytoplasmic DDAO‐SE and nuclear Syto59, co‐cultured with SAOS‐2 expressing GFP in cytoplasm and nuclei, and predominant cytoplasmic marker transferred from h‐GF to SAOS‐2 (p < 0.05). Pretreating h‐GF with TNFα increased exchange of membrane markers (p < 0.04) but did not affect either cell surface area profile or circularity. Dual‐labelled cells had a morphological phenotype differing from SAOS‐2 and h‐GF (p < 0.001). Time‐lapse microscopy revealed extensive migration of SAOS‐2 and cell process contact with h‐GF, with the appearance of SAOS‐2 indulging in ‘cellular sipping’ from h‐GF. Similar exchange of membrane was seen between h‐GF and with other cell lines (melanoma MeIRMu, NM39, WMM175, MM200‐B12; osteosarcoma U20S; ovarian carcinoma cells PE01, PE04 and COLO316), while cytoplasmic sharing was also seen in all cell lines other than U20S. We suggest that in some neoplasms, cellular sipping may contribute to phenotypic change and the generation of diverse tumour cell populations independent of genetic change, raising the possibility of a role in tumour progression. Copyright


Methods in Cell Biology | 2014

Combining wide-field super-resolution microscopy and electron tomography: rendering nanoscopic correlative arrays on subcellular architecture.

Filip Braet; Delfine Cheng; Minh Huynh; Jeffrey Henriquez; Gerry Shami; Marko Lampe

In this chapter, the authors outline in full detail, an uncomplicated approach that enables the combination of wide-field fluorescence super-resolution microscopy with electron tomography, thereby providing an approach that affords the best possible confidence in the structures investigated. The methodical steps to obtain these high-throughput correlative nanoscopic arrays will be visually explored and outlined in detail. The authors will demonstrate the feasibility of the method on cultured Caco-2 colorectal cancer cells that are labeled for filamentous actin. The presented images, morphometric data, and generated models illustrate the strengths of our correlative approach for future advanced structural-biology-oriented questions. Correlative nanoscopy applications can be readily found in which there is a need to reveal biomolecular information at unprecedented resolution on subcellular behavior in various biological and pathobiological processes.


Scientific Reports | 2018

Three dimensional electron microscopy reveals changing axonal and myelin morphology along normal and partially injured optic nerves

Marcus K. Giacci; Carole A. Bartlett; Minh Huynh; Matt R. Kilburn; Sarah A. Dunlop; Melinda Fitzgerald

Following injury to the central nervous system, axons and myelin distinct from the initial injury site undergo changes associated with compromised function. Quantifying such changes is important to understanding the pathophysiology of neurotrauma; however, most studies to date used 2 dimensional (D) electron microscopy to analyse single sections, thereby failing to capture changes along individual axons. We used serial block face scanning electron microscopy (SBF SEM) to undertake 3D reconstruction of axons and myelin, analysing optic nerves from normal uninjured female rats and following partial optic nerve transection. Measures of axon and myelin dimensions were generated by examining 2D images at 5 µm intervals along the 100 µm segments. In both normal and injured animals, changes in axonal diameter, myelin thickness, fiber diameter, G-ratio and percentage myelin decompaction were apparent along the lengths of axons to varying degrees. The range of values for axon diameter along individual reconstructed axons in 3D was similar to the range from 2D datasets, encompassing reported variation in axonal diameter attributed to retinal ganglion cell diversity. 3D electron microscopy analyses have provided the means to demonstrate substantial variability in ultrastructure along the length of individual axons and to improve understanding of the pathophysiology of neurotrauma.


Methods in Cell Biology | 2017

Relocation is the key to successful correlative fluorescence and scanning electron microscopy

Delfine Cheng; Gerald J. Shami; Marco Morsch; Minh Huynh; Patrick Trimby; Filip Braet

In this chapter the authors report on an automated hardware and software solution enabling swift correlative sample array mapping of fluorescently stained molecules within cells and tissues across length scales. Samples are first observed utilizing wide-field optical and fluorescence microscopy, followed by scanning electron microscopy, using calibration points on a dedicated sample-relocation holder. We investigated HeLa cells in vitro, fluorescently labeled for monosialoganglioside one (GM-1), across both imaging platforms within tens of minutes of initial sample preparation. This resulted in a high-throughput and high spatially resolved correlative fluorescence and electron microscopy analysis and allowed us to collect complementary nanoscopic information on the molecular and structural composition of two differently distinct HeLa cell populations expressing different levels of GM-1. Furthermore, using the small zebrafish animal model Danio rerio, we showed the versatility and relocation accuracy of the sample-relocation holder to locate fluo-tagged macromolecular complexes within large volumes using long ribbons of serial tissue sections. The subsequent electron microscopy imaging of the tissue arrays of interest enabled the generation of correlated information on the fine distribution of albumin within hepatic and kidney tissue. Our approach underpins the merits that an automated sample-relocation holder solution brings in support of results-driven research, where relevant biological questions can be answered, and high-throughput data can be generated in a rigorous statistical manner.


Trends in Plant Science | 2018

Embracing 3D Complexity in Leaf Carbon–Water Exchange

J. Mason Earles; Thomas N. Buckley; Craig R. Brodersen; Florian A. Busch; F. Javier Cano; Brendan Choat; John R. Evans; Graham D. Farquhar; Richard Harwood; Minh Huynh; Grace P. John; Megan L. Miller; Fulton E. Rockwell; Lawren Sack; Christine Scoffoni; P.C. Struik; Alex Chi Wu; Xinyou Yin; Margaret M. Barbour

Leaves are a nexus for the exchange of water, carbon, and energy between terrestrial plants and the atmosphere. Research in recent decades has highlighted the critical importance of the underlying biophysical and anatomical determinants of CO2 and H2O transport, but a quantitative understanding of how detailed 3D leaf anatomy mediates within-leaf transport has been hindered by the lack of a consensus framework for analyzing or simulating transport and its spatial and temporal dynamics realistically, and by the difficulty of measuring within-leaf transport at the appropriate scales. We discuss how recent technological advancements now make a spatially explicit 3D leaf analysis possible, through new imaging and modeling tools that will allow us to address long-standing questions related to plant carbon-water exchange.


ACS Applied Nano Materials | 2018

Plasma Synthesis of Carbon-Based Nanocarriers for Linker-Free Immobilization of Bioactive Cargo

Miguel Santos; Praveesuda L. Michael; Elysse Filipe; Alex H.P. Chan; Juichien Hung; Richard P. Tan; Bob S.L. Lee; Minh Huynh; Clare L. Hawkins; Anna Waterhouse; M.M.M. Bilek; Steven G. Wise


Archive | 2014

Combining Wide-Field Super-Resolution Microscopy and Electron Tomography

Filip Braet; Delfine Cheng; Minh Huynh; Jeffrey Henriquez; Gerry Shami; Marko Lampe

Collaboration


Dive into the Minh Huynh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Chi Wu

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge