Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Minh Lam is active.

Publication


Featured researches published by Minh Lam.


British Journal of Cancer | 2008

Dual MET–EGFR combinatorial inhibition against T790M-EGFR-mediated erlotinib-resistant lung cancer

Zhe Tang; Runlei Du; Shan Jiang; Chunying Wu; Deborah Barkauskas; John Richey; Joseph Molter; Minh Lam; Chris A. Flask; Stanton L. Gerson; Afshin Dowlati; Lili Liu; Zhenghong Lee; Balazs Halmos; Yanming Wang; Jeffrey A. Kern; Patrick C. Ma

Despite clinical approval of erlotinib, most advanced lung cancer patients are primary non-responders. Initial responders invariably develop secondary resistance, which can be accounted for by T790M-EGFR mutation in half of the relapses. We show that MET is highly expressed in lung cancer, often concomitantly with epidermal growth factor receptor (EGFR), including H1975 cell line. The erlotinib-resistant lung cancer cell line H1975, which expresses L858R/T790M-EGFR in-cis, was used to test for the effect of MET inhibition using the small molecule inhibitor SU11274. H1975 cells express wild-type MET, without genomic amplification (CNV=1.1). At 2 μM, SU11274 had significant in vitro pro-apoptotic effect in H1975 cells, 3.9-fold (P=0.0015) higher than erlotinib, but had no effect on the MET and EGFR-negative H520 cells. In vivo, SU11274 also induced significant tumour cytoreduction in H1975 murine xenografts in our bioluminescence molecular imaging assay. Using small-animal microPET/MRI, SU11274 treatment was found to induce an early tumour metabolic response in H1975 tumour xenografts. MET and EGFR pathways were found to exhibit collaborative signalling with receptor cross-activation, which had different patterns between wild type (A549) and L858R/T790M-EGFR (H1975). SU11274 plus erlotinib/CL-387,785 potentiated MET inhibition of downstream cell proliferative survival signalling. Knockdown studies in H1975 cells using siRNA against MET alone, EGFR alone, or both, confirmed the enhanced downstream inhibition with dual MET–EGFR signal path inhibition. Finally, in our time-lapse video-microscopy and in vivo multimodal molecular imaging studies, dual SU11274-erlotinib concurrent treatment effectively inhibited H1975 cells with enhanced abrogation of cytoskeletal functions and complete regression of the xenograft growth. Together, our results suggest that MET-based targeted inhibition using small-molecule MET inhibitor can be a potential treatment strategy for T790M-EGFR-mediated erlotinib-resistant non-small-cell lung cancer. Furthermore, optimised inhibition may be further achieved with MET inhibition in combination with erlotinib or an irreversible EGFR-TKI.


Journal of Biological Chemistry | 2003

Domain-dependent Photodamage to Bcl-2 A MEMBRANE ANCHORAGE REGION IS NEEDED TO FORM THE TARGET OF PHTHALOCYANINE PHOTOSENSITIZATION

Jitsuo Usuda; Song Mao Chiu; Erin S. Murphy; Minh Lam; Anna Liisa Nieminen; Nancy L. Oleinick

Photodynamic therapy using the photosensitizer Pc 4 and red light photochemically destroys the antiapoptotic protein Bcl-2 and induces apoptosis. To characterize the requirements for photodamage, we transiently transfected epitope-tagged Bcl-2 deletion mutants into DU-145 cells. Using confocal microscopy and Western blots, wild-type Bcl-2 and mutants with deletions near the N terminus were found in mitochondria, endoplasmic reticulum, and nuclear membranes and were photodamaged. A mutant missing the C terminus, including the transmembrane domain, spread diffusely in cells and was not photodamaged. Bcl-2 missing α-helices 5/6 was also not photodamaged. Bcl-2 missing only one of those α-helices, with or without substitutions of the singlet oxygen-targeted amino acids, behaved like wild-type Bcl-2 with respect to localization and photodamage. Using green fluorescent protein (GFP)-tagged Bcl-2 or mutants in live cells, no change in either the localization or the intensity of GFP fluorescence was observed in response to Pc 4 photodynamic therapy. Western blot analysis of either GFP- or Xpress-tagged Bcl-2 revealed that the photodynamic therapy-induced disappearance of the Bcl-2 band was accompanied by the appearance of bands indicative of heavily cross-linked Bcl-2 protein. Therefore, the α5/α6 region of Bcl-2 is required for photodamage and cross-linking, and domain-dependent photodamage to Bcl-2 offers a unique mechanism for activation of apoptosis.


Blood | 2011

Induction of Ca2+-driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2–IP3 receptor interaction

Fei Zhong; Michael W. Harr; Geert Bultynck; Giovanni Monaco; Jan B. Parys; Humbert De Smedt; Yi Ping Rong; Jason K. Molitoris; Minh Lam; Christopher B. Ryder; Shigemi Matsuyama; Clark W. Distelhorst

Bcl-2 contributes to the pathophysiology and therapeutic resistance of chronic lymphocytic leukemia (CLL). Therefore, developing inhibitors of this protein based on a thorough understanding of its mechanism of action is an active and promising area of inquiry. One approach centers on agents (eg, ABT-737) that compete with proapoptotic members of the Bcl-2 protein family for binding in the hydrophobic groove formed by the BH1-BH3 domains of Bcl-2. Another region of Bcl-2, the BH4 domain, also contributes to the antiapoptotic activity of Bcl-2 by binding to the inositol 1,4,5-trisphosphate receptor (IP₃R) Ca²(+) channel, inhibiting IP(3)-dependent Ca²(+) release from the endoplasmic reticulum. We report that a novel synthetic peptide, modeled after the Bcl-2-interacting site on the IP₃R, binds to the BH4 domain of Bcl-2 and functions as a competitive inhibitor of the Bcl-2-IP₃R interaction. By disrupting the Bcl-2-IP₃R interaction, this peptide induces an IP₃R-dependent Ca²(+) elevation in lymphoma and leukemia cell lines and in primary CLL cells. The Ca²(+) elevation evoked by this peptide induces apoptosis in CLL cells, but not in normal peripheral blood lymphocytes, suggesting the involvement of the Bcl-2-IP₃R interaction in the molecular mechanism of CLL and indicating the potential merit of targeting this interaction therapeutically.


Molecular and Cellular Biology | 2008

Histone deacetylase 7 promotes PML sumoylation and is essential for PML nuclear body formation

Chengzhuo Gao; Chun Chen Ho; Erin L. Reineke; Minh Lam; Xiwen Cheng; Kristopher J. Stanya; Yu Liu; Sharmistha Chakraborty; Hsiu-Ming Shih; Hung Ying Kao

ABSTRACT Promyelocytic leukemia protein (PML) sumoylation has been proposed to control the formation of PML nuclear bodies (NBs) and is crucial for PML-dependent cellular processes, including apoptosis and transcriptional regulation. However, the regulatory mechanisms of PML sumoylation and its specific roles in the formation of PML NBs remain largely unknown. Here, we show that histone deacetylase 7 (HDAC7) knockdown reduces the size and the number of the PML NBs in human umbilical vein endothelial cells (HUVECs). HDAC7 coexpression stimulates PML sumoylation independent of its HDAC activity. Furthermore, HDAC7 associates with the E2 SUMO ligase, Ubc9, and stimulates PML sumoylation in vitro, suggesting that it possesses a SUMO E3 ligase-like activity to promote PML sumoylation. Importantly, HDAC7 knockdown inhibits tumor necrosis factor alpha-induced PML sumoylation and the formation of PML NBs in HUVECs. These results demonstrate a novel function of HDAC7 and provide a regulatory mechanism of PML sumoylation.


Journal of Biological Chemistry | 2011

Glucocorticoid Elevation of Dexamethasone-induced Gene 2 (Dig2/RTP801/REDD1) Protein Mediates Autophagy in Lymphocytes

Jason K. Molitoris; Karen S. McColl; Sarah Swerdlow; Mieko Matsuyama; Minh Lam; Terri H. Finkel; Shigemi Matsuyama; Clark W. Distelhorst

Glucocorticoid hormones, including dexamethasone, induce apoptosis in lymphocytes and consequently are used clinically as chemotherapeutic agents in many hematologic malignancies. Dexamethasone also induces autophagy in lymphocytes, although the mechanism is not fully elucidated. Through gene expression analysis, we found that dexamethasone induces the expression of a gene encoding a stress response protein variously referred to as Dig2, RTP801, or REDD1. This protein is reported to inhibit mammalian target of rapamycin (mTOR) signaling. Because autophagy is one outcome of mTOR inhibition, we investigated the hypothesis that Dig2/RTP801/REDD1 elevation contributes to autophagy induction in dexamethasone-treated lymphocytes. In support of this hypothesis, RNAi-mediated suppression of Dig2/RTP801/REDD1 reduces mTOR inhibition and autophagy in glucocorticoid-treated lymphocytes. We observed similar results in Dig2/Rtp801/Redd1 knock-out murine thymocytes treated with dexamethasone. Dig2/RTP801/REDD1 knockdown also leads to increased levels of dexamethasone-induced cell death, suggesting that Dig2/RTP801/REDD1-mediated autophagy promotes cell survival. Collectively, these findings demonstrate for the first time that elevation of Dig2/RTP801/REDD1 contributes to the induction of autophagy.


Photochemistry and Photobiology | 2009

Structural factors and mechanisms underlying the improved photodynamic cell killing with silicon phthalocyanine photosensitizers directed to lysosomes versus mitochondria.

Myriam E. Rodriguez; Ping Zhang; Kashif Azizuddin; Grace B. Delos Santos; Song Mao Chiu; Liang Yan Xue; Jeffery C. Berlin; Xinzhan Peng; Hongqiao Wu; Minh Lam; Anna Liisa Nieminen; Malcolm E. Kenney; Nancy L. Oleinick

The phthalocyanine photosensitizer Pc 4 has been shown to bind preferentially to mitochondrial and endoplasmic reticulum membranes. Upon photoirradiation of Pc 4‐loaded cells, membrane components, especially Bcl‐2, are photodamaged and apoptosis, as indicated by activation of caspase‐3 and cleavage of poly(ADP‐ribose) polymerase, is triggered. A series of analogs of Pc 4 were synthesized, and the results demonstrate that Pcs with the aminopropylsiloxy ligand of Pc 4 or a similar one on one side of the Pc ring and a second large axial ligand on the other side of the ring have unexpected properties, including enhanced cell uptake, greater monomerization resulting in greater intracellular fluorescence and three‐fold higher affinity constants for liposomes. The hydroxyl‐bearing axial ligands tend to reduce aggregation of the Pc and direct it to lysosomes, resulting in four to six times more killing of cells, as defined by loss of clonogenicity, than with Pc 4. Whereas Pc 4‐PDT photodamages Bcl‐2 and Bcl‐xL, Pc 181‐PDT causes much less photodamage to Bcl‐2 over the same dose–response range relative to cell killing, with earlier cleavage of Bid and slower caspase‐3‐dependent apoptosis. Therefore, within this series of photosensitizers, these hydroxyl‐bearing axial ligands are less aggregated than is Pc 4, tend to localize to lysosomes and are more effective in overall cell killing than is Pc 4, but induce apoptosis more slowly and by a modified pathway.


Photochemistry and Photobiology | 2002

Promotion of Photodynamic Therapy-Induced Apoptosis by the Mitochondrial Protein Smac/DIABLO: Dependence on Bax¶

Jitsuo Usuda; Song Mao Chiu; Kashif Azizuddin; Liang Yan Xue; Minh Lam; Anna Liisa Nieminen; Nancy L. Oleinick

Abstract Photodynamic therapy (PDT) using the second-generation photosensitizer phthalocyanine (Pc) 4 causes mitochondrial damage and induces apoptosis through the release of cytochrome c to the cytosol. Another protein of the mitochondrial intermembrane space, Smac/DIABLO (second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI), is also released to the cytosol in response to apoptotic stimuli and promotes caspase activation by binding IAP. To investigate the possible role of Smac/DIABLO in apoptosis induced by Pc 4-PDT, we transfected Smac/DIABLO (tagged at its C-terminus with green fluorescent protein [GFP]) into MCF-7c3 cells (human breast cancer MCF-7 cells stably transfected with procaspase-3) and DU-145 cells (human prostate cancer cells that express no Bax because of a frameshift insertion mutation). Confocal microscopy showed that recombinant Smac/DIABLO, like cytochrome c, localized to mitochondria and colocalized with MitoTracker Red. Three hours after exposure of MCF-7c3 cells to PDT (200 nM Pc 4 and 150 mJ/cm2 red light), Smac/DIABLO–GFP, as well as cytochrome c, was found largely in the cytosol. In contrast, for DU-145 cells, both Smac/DIABLO–GFP and cytochrome c remained in the mitochondria after PDT. By staining with Hoechst 33342, typical apoptotic nuclei were observed in MCF-7c3 cells, but not in DU-145 cells, after Pc 4-PDT. These results suggest that the release of Smac/DIABLO from mitochondria may be regulated by a Bax-mediated mechanism and that Smac/DIABLO may cooperate with the cytochrome c–dependent apoptosis pathway. In addition, in MCF-7c3 cells transfected by Smac/DIABLO–GFP, apoptosis induced by Pc 4-PDT was greater than in cells transfected with the GFP vector alone or in untransfected cells, as determined by flow cytometry. Thus, Smac/DIABLO promotes apoptosis after Pc 4-PDT in a Bax-dependent manner and may facilitate the passage of PDT-treated cells through the late steps of apoptosis.


The EMBO Journal | 2007

Cited2, a coactivator of HNF4α, is essential for liver development

Xiaoling Qu; Eric Lam; Yong Qiu Doughman; Yu Chen; Yu Ting Chou; Minh Lam; Mona Turakhia; Sally L. Dunwoodie; Michiko Watanabe; Bing Xu; Stephen A. Duncan; Yu Chung Yang

The transcriptional modulator Cited2 is induced by various biological stimuli including hypoxia, cytokines, growth factors, lipopolysaccharide (LPS) and flow shear. In this study, we report that Cited2 is required for mouse fetal liver development. Cited2−/− fetal liver displays hypoplasia with higher incidence of cell apoptosis, and exhibits disrupted cell‐cell contact, disorganized sinusoidal architecture, as well as impaired lipid metabolism and hepatic gluconeogenesis. Furthermore, we demonstrated the physical and functional interaction of Cited2 with liver‐enriched transcription factor HNF4α. Chromatin immunoprecipitation (ChIP) assays further confirmed the recruitment of Cited2 onto the HNF4α‐responsive promoters and the reduced HNF4α binding to its target gene promoters in the absence of Cited2. Taken together, this study suggests that fetal liver defects in mice lacking Cited2 result, at least in part, from its defective coactivation function for HNF4α.


Autophagy | 2008

Apoptosis inhibition by Bcl-2 gives way to autophagy in glucocorticoid-treated lymphocytes

Sarah Swerdlow; Karen S. McColl; Yiping Rong; Minh Lam; Anu Gupta; Clark W. Distelhorst

Glucocorticosteroid hormones, including prednisone and dexamethasone (Dex), have been used to treat lymphoid malignancies for many years because they readily induce apoptosis in immature lymphocytes lacking Bcl-2. However, elevated expression of the anti-apoptotic protein Bcl-2 inhibits apoptosis and contributes to glucocorticoid resistance. Using the Bcl-2-negative WEHI7.2 lymphoma line as an experimental model, we found that Dex not only induces apoptosis but also induces autophagy. The caspase inhibitor Z-VAD-fmk inhibited apoptosis but not autophagy in Dex-treated cells. Bcl-2 overexpression inhibited Dex-induced apoptosis even more potently than Z-VAD-fmk and, contrary to previous reports, Bcl-2 neither interacted with Beclin-1 nor inhibited autophagy. Rather, Bcl-2 overexpression facilitated detection of Dex-induced autophagy by both steady state methods and flux measurements, ostensibly due to apoptosis inhibition. Autophagy contributed to prolonged survival of Bcl-2-positive lymphoma cells following Dex treatment, as survival was reduced when autophagy was inhibited by 3-methyladenine. These findings emphasize the important interplay between apoptosis and autophagy and suggest a novel mechanism by which Bcl-2, which is frequently elevated in lymphoid malignancies, contributes to glucocorticoid resistance and survival of lymphoma cells.


Photochemistry and Photobiology | 2011

Photodynamic Therapy with Pc 4 Induces Apoptosis of Candida albicans

Minh Lam; Paul C. Jou; Ali Abdul Lattif; Yoojin Lee; Christi L. Malbasa; Pranab K. Mukherjee; Nancy L. Oleinick; Mahmoud A. Ghannoum; Kevin D. Cooper; Elma D. Baron

The high prevalence of drug resistance necessitates the development of novel antifungal agents against infections caused by opportunistic fungal pathogens, such as Candida albicans. Elucidation of apoptosis in yeast‐like fungi may provide a basis for future therapies. In mammalian cells, photodynamic therapy (PDT) has been demonstrated to generate reactive oxygen species, leading to immediate oxidative modifications of biological molecules and resulting in apoptotic cell death. In this report, we assess the in vitro cytotoxicity and mechanism of PDT, using the photosensitizer Pc 4, in planktonic C. albicans. Confocal image analysis confirmed that Pc 4 localizes to cytosolic organelles, including mitochondria. A colony formation assay showed that 1.0 μm Pc 4 followed by light at 2.0 J cm−2 reduced cell survival by 4 logs. XTT (2,3‐bis[2‐methoxy‐4‐nitro‐5‐sulfophenyl]‐2H‐tetrazolium‐5‐carboxyanilide) assay revealed that Pc 4‐PDT impaired fungal metabolic activity, which was confirmed using the FUN‐1 (2‐chloro‐4‐[2,3‐dihydro‐3‐methyl‐(benzo‐1,3‐thiazol‐2‐yl)‐methylidene]‐1‐phenylquinolinium iodide) fluorescence probe. Furthermore, we observed changes in nuclear morphology characteristic of apoptosis, which were substantiated by increased externalization of phosphatidylserine and DNA fragmentation following Pc 4‐PDT. These data indicate that Pc 4‐PDT can induce apoptosis in C. albicans. Therefore, a better understanding of the process will be helpful, as PDT may become a useful treatment option for candidiasis.

Collaboration


Dive into the Minh Lam's collaboration.

Top Co-Authors

Avatar

Nancy L. Oleinick

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Elma D. Baron

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Clark W. Distelhorst

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Anna Liisa Nieminen

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Song Mao Chiu

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Kevin D. Cooper

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Fabio Cominelli

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Hung Ying Kao

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Malcolm E. Kenney

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Kashif Azizuddin

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge