Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Minja Gerber is active.

Publication


Featured researches published by Minja Gerber.


Molecules | 2014

Review of Natural Compounds for Potential Skin Cancer Treatment

Tawona N. Chinembiri; Lissinda H. Du Plessis; Minja Gerber; Josias H. Hamman; Jeanetta du Plessis

Most anti-cancer drugs are derived from natural resources such as marine, microbial and botanical sources. Cutaneous malignant melanoma is the most aggressive form of skin cancer, with a high mortality rate. Various treatments for malignant melanoma are available, but due to the development of multi-drug resistance, current or emerging chemotherapies have a relatively low success rates. This emphasizes the importance of discovering new compounds that are both safe and effective against melanoma. In vitro testing of melanoma cell lines and murine melanoma models offers the opportunity for identifying mechanisms of action of plant derived compounds and extracts. Common anti-melanoma effects of natural compounds include potentiating apoptosis, inhibiting cell proliferation and inhibiting metastasis. There are different mechanisms and pathways responsible for anti-melanoma actions of medicinal compounds such as promotion of caspase activity, inhibition of angiogenesis and inhibition of the effects of tumor promoting proteins such as PI3-K, Bcl-2, STAT3 and MMPs. This review thus aims at providing an overview of anti-cancer compounds, derived from natural sources, that are currently used in cancer chemotherapies, or that have been reported to show anti-melanoma, or anti-skin cancer activities. Phytochemicals that are discussed in this review include flavonoids, carotenoids, terpenoids, vitamins, sulforaphane, some polyphenols and crude plant extracts.


Molecules | 2011

Transdermal drug delivery enhancement by compounds of natural origin

Lizelle T. Fox; Minja Gerber; Jeanetta du Plessis; Josias H. Hamman

The transdermal route of administration offers an alternative pathway for systemic drug delivery with numerous advantages over conventional routes. Regrettably, the stratum corneum forms a formidable barrier that hinders the percutaneous penetration of most drugs, offering an important protection mechanism to the organism against entrance of possible dangerous exogenous molecules. Different types of penetration enhancers have shown the potential to reversibly overcome this barrier to provide effective delivery of drugs across the skin. Although certain chemical and physical skin penetration enhancers are already employed by the pharmaceutical industry in commercially available transdermal products, some skin penetration enhancers are associated with irritating and toxic effects. This emphasizes the need for the discovery of new, safe and effective skin penetration enhancers. Penetration enhancers from natural origin have become popular as they offer several benefits over their synthetic counterparts such as sustainable mass production from a renewable resource and lower cost depending on the type of extraction used. The aim of this article is to give a comprehensive summary of the results from scientific research conducted on skin penetration enhancers of natural origin. The discussions on these natural penetration enhancers have been organized into the following chemical classes: essential oils, terpenes, fatty acids and polysaccharides.


Journal of Controlled Release | 2015

Breaching the skin barrier through temperature modulations.

Yasser Shahzad; Ruaan Louw; Minja Gerber; Jeanetta du Plessis

The impermeability of the stratum corneum often hinders the transport of molecules across the skin. Temperature modulations in the skin and the application of local heat both have the potential of circumventing this problem temporarily and reversibly and when applied, may aid in enhancing drug diffusion through the skin. A controlled and precise application of heat has the ability to create a cascade of events in the skin and thus aids in facilitating a faster movement of molecules into and across the skin. Possible mechanisms of enhancing drug permeation include: a) increase in drug diffusivity in the vehicle and/or in the skin, b) increase in partitioning and diffusion, c) disturbance in the lipid structure of the stratum corneum, and d) increased local blood flow. These mechanisms may operate individually or concurrently. The creation of micropores or channels in response to exposure to very high heat energy for a fraction of time is another technique that can facilitate the transport, known as thermal ablation. These micropores then serve as channels from where drug molecules can escape from formulations into the skin at a much faster rate than through passive diffusion. This review, therefore, summarises the effects that temperature modulations may have on the permeability of the skin. Physical techniques of heat induced skin ablation, such as chemical heating, thermoporation, radiofrequency induced thermal ablation, and laser induced thermal ablation are also presented in this review.


Drug Delivery | 2016

Topical delivery of acyclovir and ketoconazole

Gerda A. Jacobs; Minja Gerber; Maides M. Malan; Jan L. Du Preez; Lizelle T. Fox; Jeanetta du Plessis

Abstract Context: Viral and fungal cutaneous manifestations are regularly encountered in immunocompromised human immunodeficiency virus/acquired immunodeficiency syndrome individuals and can be treated by drugs such as acyclovir and ketoconazole, respectively. Objective: The aim of this study was to determine whether the novel Pheroid™ delivery system improved the transdermal delivery and/or dermal delivery of acyclovir and ketoconazole when incorporated into semi-solid formulations. Materials and methods: Semi-solid products (creams and emulgels) containing these drug compounds were formulated, either with or without (control) the Pheroid™ delivery system. The stability of the formulated semi-solid products was examined over a period of six months and included the assay of the actives, pH, viscosity, mass loss and particle size observation. Vertical Franz cell diffusion studies and tape stripping methods were used to determine the in vitro, stratum corneum (SC)-epidermis and epidermis-dermis delivery of these formulations. Results and discussion: Stability tests showed that none of the formulations were completely stable. Acyclovir showed a biphasic character during the in vitro skin diffusion studies for all the tested formulations. The Pheroid™ cream enhanced the transdermal, SC-epidermis and epidermis–dermis delivery of acyclovir the most. The average amount of ketoconazole diffused over 12 h showed improved delivery of ketoconazole, with the Pheroid™ emulgel exhibiting the best transdermal and epidermis–dermis delivery. Conclusion: The Pheroid™ formulae increased transdermal penetration as well as delivery to the dermal and epidermal skin layers. The Pheroid™ emulgel and the Pheroid™ cream increased the topical delivery of ketoconazole and acyclovir, respectively.


Molecules | 2016

Treatment Modalities for Acne.

Lizelle T. Fox; Candice Csongradi; Marique Aucamp; Jeanetta du Plessis; Minja Gerber

Acne is a common inflammatory skin disease which affects the pilosebaceous units of the skin. It can have severe psychological effects and can leave the patient with severe skin scarring. There are four well-recognized pathological factors responsible for acne which is also the target for acne therapy. In this review, different treatment options are discussed, including topical (i.e., retinoids, and antibiotics) and systemic (i.e., retinoids, antibiotics, and hormonal) treatments. Since the general public has been showing an increasing interest in more natural and generally safer treatment options, the use of complementary and alternative medicines (CAM) for treating acne was also discussed. The use of physical therapies such as comedone extraction, cryoslush therapy, cryotherapy, electrocauterization, intralesional corticosteroids and optical treatments are also mentioned. Acne has been extensively researched with regards to the disease mechanism as well as treatment options. However, due to the increasing resistance of Propionibacterium acnes towards the available antibiotics, there is a need for new treatment methods. Additionally, the lack of necessary evidence on the efficacy of CAM therapies makes it necessary for researchers to investigate these treatment options further.


Pharmacognosy Magazine | 2014

In Vivo skin hydration and anti-erythema effects of Aloe vera, Aloe ferox and Aloe marlothii gel materials after single and multiple applications

Lizelle T. Fox; Jeanetta du Plessis; Minja Gerber; Sterna Van Zyl; Banie Boneschans; Josias H. Hamman

Objective: To investigate the skin hydrating and anti-erythema activity of gel materials from Aloe marlothii A. Berger and A. ferox Mill. in comparison to that of Aloe barbadensis Miller (Aloe vera) in healthy human volunteers. Materials and Methods: Aqueous solutions of the polisaccharidic fractions of the selected aloe leaf gel materials were applied to the volar forearm skin of female subjects. The hydration effect of the aloe gel materials were measured with a Corneometer® CM 825, Visioscan® VC 98 and Cutometer® dual MPA 580 after single and multiple applications. The Mexameter® MX 18 was used to determine the anti-erythema effects of the aloe material solutions on irritated skin areas. Results: The A. vera and A. marlothii gel materials hydrated the skin after a single application, whereas the A. ferox gel material showed dehydration effects compared to the placebo. After multiple applications all the aloe materials exhibited dehydration effects on the skin. Mexameter® readings showed that A. vera and A. ferox have anti-erythema activity similar to that of the positive control group (i.e. hydrocortisone gel) after 6 days of treatment. Conclusion: The polysaccharide component of the gel materials from selected aloe species has a dehydrating effect on the skin after multiple applications. Both A. vera and A. ferox gel materials showed potential to reduce erythema on the skin similar to that of hydrocortisone gel.


Journal of Ethnopharmacology | 2017

In vitro wound healing and cytotoxic activity of the gel and whole-leaf materials from selected aloe species

Lizelle T. Fox; Anisha Mazumder; Anupma Dwivedi; Minja Gerber; Jeanetta du Plessis; Josias H. Hamman

ETHNOPHARMACOLOGICAL RELEVANCE Aloe vera is one of the most important medicinal plants in the world with applications in the cosmetic industry and also in the tonic or health drink product market. Different parts of Aloe ferox and Aloe marlothii are used as traditional medicines for different applications. Although wound healing has been shown for certain aloe gel materials (e.g. A. vera ) previously, there are conflicting reports on this medicinal application of aloe leaf gel materials. AIM OF THE STUDY The present study aimed at determining the wound healing properties of the gel and whole-leaf materials of Aloe vera, Aloe ferox and Aloe marlothii, as well as their cytotoxic effects on normal human keratinocyte cells (HaCaT). MATERIALS AND METHODS Nuclear magnetic resonance spectroscopy was used to chemically fingerprint the aloe gel and whole-leaf materials by identifying characteristic marker molecules of aloe gel and whole-leaf materials. An MTT assay was performed to determine the cytotoxicity of the various aloe whole-leaf and gel materials on HaCaT cells. Wound healing and in vitro cell migration were investigated with HaCaT cells by means of the CytoSelect™ assay kit. RESULTS The in vitro wound healing assay suggested that all the aloe gel and whole-leaf materials examined, exhibited faster wound healing activity than the untreated control group. After 48h, all the aloe gel and whole-leaf materials almost completely caused full wound closure, displaying 98.07% (A. marlothii whole-leaf), 98.00% (A. vera gel), 97.20% (A. marlothii gel), 96.00% (A. vera whole-leaf), 94.00% (A. ferox gel) and 81.30% (A. ferox whole-leaf) wound closure, respectively. It was noteworthy that the gel materials of all the three aloe species exhibited significantly faster (p<0.05) wound healing actions when compared to their respective whole-leaf materials at 32h. CONCLUSION The gel and whole-leaf materials of A. vera, A. ferox and A. marlothii have shown the ability to heal wounds at a faster rate and to a larger extent than untreated keratinocytes. The MTT assay results suggested that the gel and whole-leaf materials of all the selected Aloe species showed negligible toxicity towards the HaCaT cells.


Journal of Pharmaceutical Sciences | 2016

Essential Fatty Acids as Transdermal Penetration Enhancers.

Lindi van Zyl; Jan L. Du Preez; Minja Gerber; Jeanetta du Plessis; Joe Viljoen

The aim of this study was to investigate the effect of different penetration enhancers, containing essential fatty acids (EFAs), on the transdermal delivery of flurbiprofen. Evening primrose oil (EPO), vitamin F, and Pheroid technology all contain fatty acids and were compared using a cream-based formulation. This selection was to ascertain whether EFAs solely, or EFAs in a Pheroid delivery system, would have a significant increase in the transdermal delivery of a compound. Membrane release studies were performed, and the results indicated the following rank order for flurbiprofen release from the different formulations: vitamin F >> control > EPO >> Pheroid. Topical skin delivery results indicated that flurbiprofen was present in the stratum corneum-epidermis and the epidermis-dermis. The average percentage flurbiprofen diffused to the receptor phase (representing human blood) indicated that the EPO formulation showed the highest average percentage diffused. The Pheroid formulation delivered the lowest concentration with a statistical significant difference (p < 0.05) compared with the control formulation (containing 1% flurbiprofen and no penetration enhancers). The control formulation presented the highest average flux, with the EPO formulation following the closest. It could, thus, be concluded that EPO is the most favorable chemical penetration enhancer when used in this formulation.


Journal of Pharmacy and Pharmacology | 2015

Skin permeation enhancement effects of the gel and whole-leaf materials of Aloe vera, Aloe marlothii and Aloe ferox

Lizelle T. Fox; Minja Gerber; Jan L. Du Preez; Jeanetta du Plessis; Josias H. Hamman

The aim of this study was to investigate the in‐vitro permeation enhancement effects of the gel and whole‐leaf materials of Aloe vera, Aloe marlothii and Aloe ferox using ketoprofen as a marker compound.


Drug Development and Industrial Pharmacy | 2015

Penetration enhancing effects of selected natural oils utilized in topical dosage forms

Joe Viljoen; Amé Cowley; Jan L. Du Preez; Minja Gerber; Jeanetta du Plessis

Abstract Context: Various natural products, including oils, have been utilized as penetration enhancers due to their “safety profiles”. These oils contain fatty acids promoting skin permeability through lipid fluidization within the stratum corneum; and might therefore be able to effectively enhance transdermal drug delivery. Objective: We investigated possible penetration enhancing properties of selected oils, utilizing flurbiprofen as marker compound in emulgel formulations. The formulations were compared to a liquid paraffin emulgel and a hydrogel to establish any significant penetration enhancing effects. Methods: Gas chromatographic analysis of the natural oils was performed at ambient temperature to determine the fatty acid composition in each selected natural oils. Franz cell diffusion studies and tape stripping methods were employed to study delivery of the marker into, and through the skin. Results: The following rank order for the emulgel flux-values was obtained: Hydrogel >>>> olive oil >> liquid paraffin >> coconut oil > grape seed oil >> Avocado oil ≥ Crocodile oil >> Emu oil. Discussion: Results suggested that oils containing predominantly mono-unsaturated oleic acid, on average increased the flux of the marker to a larger extent than oils containing an almost even mixture of both mono- and poly-unsaturated fatty acids. Oils comprising saturated fatty acids (SFAs) with alkyl chains between C12 and C14, increased the marker flux to a higher extent than oils containing C16–C18 SFAs. Effects observed for branched fatty acids, however, did not vary significantly from effects for unbranched fatty acids with the same carbon chain length. Conclusion: Natural oils possess penetration enhancing effects.

Collaboration


Dive into the Minja Gerber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasser Shahzad

University of Huddersfield

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge