Minjoung Kyoung
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Minjoung Kyoung.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Minjoung Kyoung; Ankita Srivastava; Yunxiang Zhang; Jiajie Diao; Marija Vrljic; Patricia Grob; Eva Nogales; Steven Chu; Axel T. Brunger
Understanding the molecular principles of synaptic vesicle fusion is a long-sought goal. It requires the development of a synthetic system that allows manipulations and observations not possible in vivo. Here, we report an in vitro system with reconstituted synaptic proteins that meets the long-sought goal to produce fast content release in the millisecond time regime upon Ca2+ triggering. Our system simultaneously monitors both content and lipid exchange, and it starts from stable interacting pairs of donor and acceptor vesicles, mimicking the readily releasable pool of synaptic vesicles prior to an action potential. It differentiates between single-vesicle interaction, hemifusion, and complete fusion, the latter mimicking quantized neurotransmitter release upon exocytosis of synaptic vesicles. Prior to Ca2+ injection, the system is in a state in which spontaneous fusion events between donor and acceptor vesicles are rare. Upon Ca2+ injection, a rapid burst of complete fusion events emerges, followed by a biphasic decay. The present study focuses on neuronal SNAREs, the Ca2+ sensor synaptotagmin 1, and the modulator complexin. However, other synaptic proteins could be added and their function examined. Ca2+ triggering is cooperative, requiring the presence of synaptotagmin, whereas SNAREs alone do not produce a fast fusion burst. Manipulations of the system mimic effects observed in vivo. These results also show that neuronal SNAREs alone do not efficiently produce complete fusion, that the combination of SNAREs with synaptotagmin lowers the activation barriers to full fusion, and that complexin enhances this kinetic control.
eLife | 2013
Jiajie Diao; Jacqueline Burré; Sandro Vivona; Daniel J. Cipriano; Manu Sharma; Minjoung Kyoung; Thomas C. Südhof; Axel T. Brunger
α-Synuclein is a presynaptic protein that is implicated in Parkinsons and other neurodegenerative diseases. Physiologically, native α-synuclein promotes presynaptic SNARE-complex assembly, but its molecular mechanism of action remains unknown. Here, we found that native α-synuclein promotes clustering of synaptic-vesicle mimics, using a single-vesicle optical microscopy system. This vesicle-clustering activity was observed for both recombinant and native α-synuclein purified from mouse brain. Clustering was dependent on specific interactions of native α-synuclein with both synaptobrevin-2/VAMP2 and anionic lipids. Out of the three familial Parkinsons disease-related point mutants of α-synuclein, only the lipid-binding deficient mutation A30P disrupted clustering, hinting at a possible loss of function phenotype for this mutant. α-Synuclein had little effect on Ca2+-triggered fusion in our reconstituted single-vesicle system, consistent with in vivo data. α-Synuclein may therefore lead to accumulation of synaptic vesicles at the active zone, providing a ‘buffer’ of synaptic vesicles, without affecting neurotransmitter release itself. DOI: http://dx.doi.org/10.7554/eLife.00592.001
Nature Protocols | 2013
Minjoung Kyoung; Yunxiang Zhang; Jiajie Diao; Steven Chu; Axel T. Brunger
This protocol describes a single vesicle-vesicle microscopy system to study Ca2+-triggered vesicle fusion. Donor vesicles contain reconstituted synaptobrevin and synaptotagmin-1. Acceptor vesicles contain reconstituted syntaxin and synaptosomal-associated protein 25 (SNAP-25), and they are tethered to a PEG-coated glass surface. Donor vesicles are mixed with the tethered acceptor vesicles and incubated for several minutes at a zero-Ca2+ concentration, resulting in a collection of single interacting vesicle pairs. The donor vesicles also contain two spectrally distinct fluorophores that allow simultaneous monitoring of temporal changes of the content and membrane. Upon Ca2+ injection into the sample chamber, our system therefore differentiates between hemifusion and complete fusion of interacting vesicle pairs and determines the temporal sequence of these events on a sub-100-millisecond time scale. Other factors such as complexin can be easily added. Our system is unique in that it monitors both content and lipid mixing and starts from a metastable state of interacting vesicle pairs before Ca2+ injection.
Nature Chemical Biology | 2011
Florence Verrier; Songon An; Ann M. Ferrie; Haiyan Sun; Minjoung Kyoung; Huayun Deng; Ye Fang; Stephen J. Benkovic
G protein-coupled receptors (GPCRs) transmit exogenous signals to the nucleus, promoting a myriad of biological responses via multiple signaling pathways in both normal and cancer cells. However, little is known about the response in cytosolic metabolic pathways to GPCR-mediated signaling. Here, we applied fluorescent live-cell imaging and label-free dynamic mass redistribution assays to study whether purine metabolism is associated with GPCR signaling. By screening a library of GPCR ligands in conjunction with live-cell imaging of a metabolic multienzyme complex for de novo purine biosynthesis, the purinosome, we demonstrated that the activation of endogenous Gαi-coupled receptors correlates with purinosome assembly/disassembly in native HeLa cells. Given the implications of GPCRs in mitogenic signaling as well as the purinosome in controlling metabolic flux via de novo purine biosynthesis, we hypothesize that regulation of purinosome assembly/disassembly may represent one of downstream events of mitogenic GPCR signaling in human cancer cells.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Songon An; Yijun Deng; John W. Tomsho; Minjoung Kyoung; Stephen J. Benkovic
Evidence has been presented for a metabolic multienzyme complex, the purinosome, that participates in de novo purine biosynthesis to form clusters in the cytoplasm of living cells under purine-depleted conditions. Here we identified, using fluorescent live cell imaging, that a microtubule network appears to physically control the spatial distribution of purinosomes in the cytoplasm. Application of a cell-based assay measuring the rate of de novo purine biosynthesis confirmed that the metabolic activity of purinosomes was significantly suppressed in the absence of microtubules. Collectively, we propose a microtubule-assisted mechanism for functional purinosome formation in HeLa cells.
Journal of Biological Chemistry | 2010
Songon An; Minjoung Kyoung; Jasmina J. Allen; Kevan M. Shokat; Stephen J. Benkovic
The reversible association and dissociation of a metabolic multi-enzyme complex participating in de novo purine biosynthesis, the purinosome, was demonstrated in live cells to respond to the levels of purine nucleotides in the culture media. We also took advantage of in vitro proteomic scale studies of cellular substrates of human protein kinases (e.g. casein kinase II (CK2) and Akt), that implicated several de novo purine biosynthetic enzymes as kinase substrates. Here, we successfully identified that purinosome formation in vivo was significantly promoted in HeLa cells by the addition of small-molecule CK2-specific inhibitors (i.e. 4,5,6,7-tetrabromo-1H-benzimidazole, 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole, tetrabromocinammic acid, 4,4′,5,5′,6,6′-hexahydroxydiphenic acid 2,2′,6,6′-dilactone (ellagic acid) as well as by silencing the endogenous human CK2α catalytic subunit with small interfering RNA. However, 4,5,6,7-tetrabromobenzotriazole, another CK2-specific inhibitor, triggered the dissociation of purinosome clusters in HeLa cells. Although the mechanism by which 4,5,6,7-tetrabromobenzotriazole affects purinosome clustering is not clear, we were capable of chemically reversing purinosome formation in cells by the sequential addition of two CK2 inhibitors. Collectively, we provide compelling cellular evidence that CK2-mediated pathways reversibly regulate purinosome assembly, and thus the purinosome may be one of the ultimate targets of kinase inhibitors.
Optics Communications | 1999
Minjoung Kyoung; Minyung Lee
We report the first measurement on the nonlinear optical coefficients of ellipsoidal silver nanoparticles in the longitudinal surface plasmon absorption region (800 nm), by using the Z-scan technique. It has been observed that the nonlinear absorption and nonlinear index of silver nanorods embedded in borosilicate glass differ remarkably from those of spheroids.
BioEssays | 2013
Jiajie Diao; Minglei Zhao; Yunxiang Zhang; Minjoung Kyoung; Axel T. Brunger
In vitro reconstitution assays are commonly used to study biological membrane fusion. However, to date, most ensemble and single-vesicle experiments involving SNARE proteins have been performed only with lipid-mixing, but not content-mixing indicators. Through simultaneous detection of lipid and small content-mixing indicators, we found that lipid mixing often occurs seconds prior to content mixing, or without any content mixing at all, during a 50-seconds observation period, for Ca(2+) -triggered fusion with SNAREs, full-length synaptotagmin-1, and complexin. Our results illustrate the caveats of commonly used bulk lipid-mixing fusion experiments. We recommend that proteoliposome fusion experiments should always employ content-mixing indicators in addition to, or in place of, lipid-mixing indicators.
Biochemistry | 2015
Minjoung Kyoung; Sarah J. Russell; Casey L. Kohnhorst; Nopondo N. Esemoto; Songon An
Enzymes in human de novo purine biosynthesis have been demonstrated to form a reversible, transient multienzyme complex, the purinosome, upon purine starvation. However, characterization of purinosomes has been limited to HeLa cells and has heavily relied on qualitative examination of their subcellular localization and reversibility under wide-field fluorescence microscopy. Quantitative approaches, which are particularly compatible with human disease-relevant cell lines, are necessary to explicitly understand the purinosome in live cells. In this work, human breast carcinoma Hs578T cells have been utilized to demonstrate the preferential utilization of the purinosome under purine-depleted conditions. In addition, we have employed a confocal microscopy-based biophysical technique, fluorescence recovery after photobleaching, to characterize kinetic properties of the purinosome in live Hs578T cells. Quantitative characterization of the diffusion coefficients of all de novo purine biosynthetic enzymes reveals the significant reduction of their mobile kinetics upon purinosome formation, the dynamic partitioning of each enzyme into the purinosome, and the existence of three intermediate species in purinosome assembly under purine starvation. We also demonstrate that the diffusion coefficient of the purine salvage enzyme, hypoxanthine phosphoribosyltransferase 1, is not sensitive to purine starvation, indicating exclusion of the salvage pathway from the purinosome. Furthermore, our biophysical characterization of nonmetabolic enzymes clarifies that purinosomes are spatiotemporally different cellular bodies from stress granules and cytoplasmic protein aggregates in both Hs578T and HeLa cells. Collectively, quantitative analyses of the purinosome in Hs578T cells led us to provide novel insights for the dynamic architecture of the purinosome assembly.
Biochimica et Biophysica Acta | 2008
Kanika Vats; Minjoung Kyoung; Erin D. Sheets
Biomembranes are complex, heterogeneous, dynamic systems playing essential roles in numerous processes such as cell signaling and membrane trafficking. Model membranes provide simpler platforms for studying biomembrane dynamics under well-controlled environments. Here we present a modified polymer lift-off approach to introduce chemical complexity into biomimetic membranes by constructing domains of one lipid composition (here, didodecylphosphatidylcholine) that are surrounded by a different lipid composition (e.g., dipentadecylphosphatidylcholine), which we refer to as patterned backfilled samples. Fluorescence microscopy and correlation spectroscopy were used to characterize this patterning approach. We observe two types of domain populations: one with diffuse boundaries and a minor fraction with sharp edges. Lipids within the diffuse domains in patterned backfilled samples undergo anomalous diffusion, which results from nonideally mixed clusters of gel phase lipid within the fluid domains. No lateral diffusion was observed within the minor population of domains with well-defined borders. These results suggest that, while membrane patterning by a variety of approaches is useful for biophysical and biosensor applications, a thorough and systematic characterization of the resulting biomimetic membrane, and its unpatterned counterpart, is essential.