Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Minmin Liang is active.

Publication


Featured researches published by Minmin Liang.


Nature Nanotechnology | 2012

Magnetoferritin nanoparticles for targeting and visualizing tumour tissues

Kelong Fan; Changqian Cao; Yongxin Pan; Di Lu; Dongling Yang; Jing Feng; Lina Song; Minmin Liang; Xiyun Yan

Engineered nanoparticles have been used to provide diagnostic, therapeutic and prognostic information about the status of disease. Nanoparticles developed for these purposes are typically modified with targeting ligands (such as antibodies, peptides or small molecules) or contrast agents using complicated processes and expensive reagents. Moreover, this approach can lead to an excess of ligands on the nanoparticle surface, and this causes non-specific binding and aggregation of nanoparticles, which decreases detection sensitivity. Here, we show that magnetoferritin nanoparticles (M-HFn) can be used to target and visualize tumour tissues without the use of any targeting ligands or contrast agents. Iron oxide nanoparticles are encapsulated inside a recombinant human heavy-chain ferritin (HFn) protein shell, which binds to tumour cells that overexpress transferrin receptor 1 (TfR1). The iron oxide core catalyses the oxidation of peroxidase substrates in the presence of hydrogen peroxide to produce a colour reaction that is used to visualize tumour tissues. We examined 474 clinical specimens from patients with nine types of cancer and verified that these nanoparticles can distinguish cancerous cells from normal cells with a sensitivity of 98% and specificity of 95%.


Analytical Chemistry | 2013

Fe3O4 Magnetic Nanoparticle Peroxidase Mimetic-Based Colorimetric Assay for the Rapid Detection of Organophosphorus Pesticide and Nerve Agent

Minmin Liang; Kelong Fan; Yong Pan; Hui Jiang; Fei Wang; Dongling Yang; Di Lu; Jing Feng; Jianjun Zhao; Liu Yang; Xiyun Yan

Rapid and sensitive detection methods are in urgent demand for the screening of extensively used organophosphorus pesticides and highly toxic nerve agents for their neurotoxicity. In this study, we developed a novel Fe(3)O(4) magnetic nanoparticle (MNP) peroxidase mimetic-based colorimetric method for the rapid detection of organophosphorus pesticides and nerve agents. The detection assay is composed of MNPs, acetylcholinesterase (AChE), and choline oxidase (CHO). The enzymes AChE and CHO catalyze the formation of H(2)O(2) in the presence of acetylcholine, which then activates MNPs to catalyze the oxidation of colorimetric substrates to produce a color reaction. After incubation with the organophosphorus neurotoxins, the enzymatic activity of AChE was inhibited and produced less H(2)O(2), resulting in a decreased catalytic oxidation of colorimetric substrates over MNP peroxidase mimetics, accompanied by a drop in color intensity. Three organophosphorus compounds were tested on the assay: acephate and methyl-paraoxon as representative organophosphorus pesticides and the nerve agent Sarin. The novel assay displayed substantial color change after incubation in organophosphorus neurotoxins in a concentration-dependent manner. As low as 1 nM Sarin, 10 nM methyl-paraoxon, and 5 μM acephate are easily detected by the novel assay. In conclusion, by employing the peroxidase-mimicking activity of MNPs, the developed colorimetric assay has the potential of becoming a screening tool for the rapid and sensitive assessment of the neurotoxicity of an overwhelming number of organophosphate compounds.


Proceedings of the National Academy of Sciences of the United States of America | 2014

H-ferritin–nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection

Minmin Liang; Kelong Fan; Meng Zhou; Demin Duan; Jiyan Zheng; Dongling Yang; Jing Feng; Xiyun Yan

Significance Nanoparticles capable of specifically binding to target cells and delivering high doses of therapeutic drugs with optimized safety profiles are much sought after in the nanomedical field. Here, we developed a natural H-ferritin (HFn) nanocarrier that specifically delivered a high concentration of the therapeutic drug doxorubicin (Dox) to tumor cells and significantly inhibited tumor growth with a single-dose treatment while also showing excellent biocompatibility and safety profiles in murine cancer models. Compared with the clinically approved liposomal Dox (Doxil), HFn-Dox exhibited longer median survival times and lower toxicity when administered at the same dose in all tumor models studied. An ideal nanocarrier for efficient drug delivery must be able to target specific cells and carry high doses of therapeutic drugs and should also exhibit optimized physicochemical properties and biocompatibility. However, it is a tremendous challenge to engineer all of the above characteristics into a single carrier particle. Here, we show that natural H-ferritin (HFn) nanocages can carry high doses of doxorubicin (Dox) for tumor-specific targeting and killing without any targeting ligand functionalization or property modulation. Dox-loaded HFn (HFn-Dox) specifically bound and subsequently internalized into tumor cells via interaction with overexpressed transferrin receptor 1 and released Dox in the lysosomes. In vivo in the mouse, HFn-Dox exhibited more than 10-fold higher intratumoral drug concentration than free Dox and significantly inhibited tumor growth after a single-dose injection. Importantly, HFn-Dox displayed an excellent safety profile that significantly reduced healthy organ drug exposure and improved the maximum tolerated dose by fourfold compared with free Dox. Moreover, because the HFn nanocarrier has well-defined morphology and does not need any ligand modification or property modulation it can be easily produced with high purity and yield, which are requirements for drugs used in clinical trials. Thus, these unique properties make the HFn nanocage an ideal vehicle for efficient anticancer drug delivery.


Journal of Physical Chemistry B | 2008

Photoelectrochemical detection of oxidative DNA damage induced by Fenton reaction with low concentration and DNA-associated Fe2+.

Suping Jia; Minmin Liang; Liang-Hong Guo

The metal ion dependent decomposition of hydrogen peroxide, the so-called Fenton Reaction, yields hydroxyl radicals that can cause oxidative DNA damage both in vitro and in vivo. We have previously reported a photoelectrochemical sensor for the detection of oxidative DNA damage induced by an Fe(2+)-mediated Fenton Reaction, using a DNA intercalator as a photoelectrochemical signal reporter (Liang, M.; Guo, L.-H. Environ. Sci. Technol. 2007, 41, 658). The intercalator binds less to the damaged DNA in the sensor film than the native form, resulting in a reduction in the measured photocurrent. In this report, some mechanistic aspects of the sensor were investigated. It was found that Fe(2+) alone (without the coexistence of H(2)O(2)) suppressed the photocurrent of the intercalator bound to the DNA film in a pH-dependent manner. Similar pH dependence was observed for the zeta potential of the tin oxide nanoparticle colloid used in the preparation of the semiconductor electrode, leading to the hypothesis that the metal ion binds to the surface oxide groups on the electrode and quenches the photoelectrochemical response. At pH 3, the quenching effect was reduced substantially to permit the detection of DNA damage by as low as 10 muM Fe(2+) and 40 microM H(2)O(2), a concentration that is within the physiologically relevant range. It was also found that Fe2+ ions associated with the DNA in the sensor film and participated in the DNA damage reaction, a mechanism that has been implicated in previous studies on metal carcinogenesis.


Bioconjugate Chemistry | 2010

Multimodality Nuclear and Fluorescence Tumor Imaging in Mice Using a Streptavidin Nanoparticle

Minmin Liang; Xinrong Liu; Dengfeng Cheng; Guozheng Liu; Shuping Dou; Yi Wang; Mary Rusckowski; Donald J. Hnatowich

Combining two or more different imaging modalities in the same agent can be of considerable value in molecular imaging. We describe the use of streptavidin nanoparticle-based complexes as multimodality imaging agents to achieve tumor detection in a mouse model by both fluorescence and nuclear imaging. Up to four biotinylated functionalities can be readily attached to these streptavidin nanoparticles without apparent influence on their properties and with reasonable pharmacokinetics and therefore may be ideally suited for multimodality imaging. By binding a biotinylated anti-Her2 Herceptin antibody to provide tumor targeting, a biotinylated DOTA chelator labeled with (111)ln and a biotinylated Cy5.5 fluorophore to a streptavidin nanoparticle, we demonstrated multimodality imaging in SUM190 (Her2+) tumor bearing mice on both an IVIS fluorescence camera and a NanoSPECT/CT small animal nuclear camera. The imaging results show high tumor accumulation and strong tumor-to-normal tissue contrast by both fluorescence and nuclear imaging. The subsequent biodistribution study confirmed the specific tumor accumulation in that tumor accumulation of radioactivity at 40 h was 21 ID%/g and therefore much higher than all other tissues including liver, heart, kidney, spleen, and muscle that accumulated 8.7, 2.5, 6.9, 7.2, and 1.9 ID%/g, respectively. In conclusion, the streptavidin nanoparticle under development in this laboratory was used effectively for multimodality imaging of tumor in mice by fluorescence and nuclear detection. Presumably, other imaging modalities could also be considered.


Molecular Pharmaceutics | 2012

Ex vivo detection of iron oxide magnetic nanoparticles in mice using their intrinsic peroxidase-mimicking activity.

Kelong Fan; Lizeng Gao; Di Lu; Jing Feng; Dongling Yang; Ning Gu; Yu Zhang; Minmin Liang; Xiyun Yan

Iron oxide magnetic nanoparticles (MNPs) are widely used as diagnostic and therapeutic agents for biomedical applications. Quantitatively analyzing biodistribution, pharmacokinetics and organ clearance of MNPs in mouse models is important for understanding their in vivo behavior. In this study, we developed a novel histochemical method for visualizing unlabeled MNPs in mouse tissues by employing their intrinsic peroxidase-mimicking activity, regarding which we reported previously that MNPs could catalyze the oxidation of peroxidase substrates to produce a color reaction at the site of MNPs (Gao et al. Nat. Nanotechnol.2007, 2, 577-583). Based on this MNPs-peroxidase approach, we determined the biodistribution and organ clearance of MNPs by visualizing and quantifying the localization of MNPs within the main organs. Compared to traditional Prussian blue assay, this novel MNPs-peroxidase approach has higher sensitivity. In conclusion, the developed MNPs-peroxidase approach based on intrinsic peroxidase activity of iron oxide nanoparticles was used effectively for quantitative detection of MNPs in mice by histochemical staining. Presumably, other nanoparticles having intrinsic peroxidase activity could also be considered.


Bioconjugate Chemistry | 2010

Comparison of 18F PET and 99mTc SPECT imaging in phantoms and in tumored mice

Dengfeng Cheng; Yi Wang; Xinrong Liu; P. Hendrik Pretorius; Minmin Liang; Mary Rusckowski; Donald J. Hnatowich

Our objective was to compare the performance of a micro-single photon emission computed tomography (micro-SPECT) with that of a micro-positron emission tomography (microPET) in a Her2+ tumored mice using an anti-Her2 nanoparticle radiolabeled with (99m)Tc and (18)F. Camera performance was first compared using phantoms; then a tumored mouse administered the (99m)Tc-nanoparticle was imaged on a Bioscan NanoSPECT/CT, while another tumored mouse received the identical nanoparticle, labeled now with (18)F, and was imaged on a Philips Mosaic HP PET camera. The nanoparticle was radiolabeled with (99m)Tc via MAG(3) chelation and with (18)F via SFB as an intermediate. Phantom imaging showed that the resolution of the SPECT camera was clearly superior, but even with 4 heads and multipinhole collimators, detection sensitivity was 15-fold lower. Radiolabeling of the nanoparticle by chelation with (99m)Tc was considerably easier and safer than manual covalent attachment of (18)F. Both cameras provided accurate quantitation of radioactivity over a broad range. In conclusion, when deciding between (99m)Tc vs (18)F, an advantage rests with the chelation of (99m)Tc over covalent attachment of (18)F, achieved manually or otherwise, but with these small animal cameras, this choice also results in trading lower sensitivity for higher resolution.


Cancer Biology & Therapy | 2011

Identification of a high affinity TAG-72 binding peptide by phage display selection

Nan Xiao; Dengfeng Cheng; Yi Wang; Ling Chen; Xinrong Liu; Shuping Dou; Guozheng Liu; Minmin Liang; Donald J. Hnatowich; Mary Rusckowski

Purpose: Phage display was used to select novel peptides that specifically bind the TAG-72 antigen and with properties suitable for imaging TAG-72 positive cancers. Results: After three rounds of selection against TAG-72 and using two different elution conditions including a long elution, the consensus sequences FRERCDKHPQKCTKFL and DPRHCQKRVLPCPAWL were expressed on phages G3-15 and T3-15 respectively. ELISA, fluorescence-activated cell sorting analysis and fluorescence microscopy provided evidence that both phages specifically bound TAG-72 in vitro. Both peptides are stable in 37oC serum. By a cell binding competition assay, the IC50 for T3-15 was measured as 0.29 nM and therefore 36-fold higher affinity than G3-15 at 10.32 nM. The biodistribution in mice carrying LS-174T tumors in one thigh were similar for both 99mTc-peptides at 30 min, but at 90 min the 99mTc-T3-15 peptide accumulated almost three times higher in the tumor. The SPECT/CT images were consistent with the biodistribution results. Procedures: The f88-4/Cys6 phage library and two different elution conditions were used to identify two new higher affinity binding peptides for the TAG-72 antigen. One, was a single brief elution with pH 2.2 glycine buffer, and the second began with the glycine elution but was followed with a longer elution with Tris buffered saline (TBS) at pH 7.4. The phages that bound TAG-72 were evaluated by fluorescence-activated cell sorting analysis using TAG-72 positive LS-174T cells and confirmed by immunofluorescence imaging. The consensus peptides displayed on the selected phages were synthesized and conjugated with NHS-MAG3 for radiolabeling with 99mTc. The IC50 for TAG-72 binding was evaluated by cell binding competition in vitro while binding affinity was evaluated in vivo by necropsy and SPECT/CT imaging in a tumor mouse model. Conclusion: We have identified a peptide with a sub nanomolar inhibition constant for the TAG-72 antigen that may have application in cancer imaging.


ACS Nano | 2016

Bioengineered Magnetoferritin Nanoprobes for Single-Dose Nuclear-Magnetic Resonance Tumor Imaging.

Yanzhao Zhao; Minmin Liang; Xiao Li; Kelong Fan; Jie Xiao; Yanli Li; Hongcheng Shi; Fei Wang; Hak Soo Choi; Dengfeng Cheng; Xiyun Yan

Despite all the advances in multimodal imaging, it remains a significant challenge to acquire both magnetic resonance and nuclear imaging in a single dose because of the enormous difference in sensitivity. Indeed, nuclear imaging is almost 10(6)-fold more sensitive than magnetic resonance imaging (MRI); thus, repeated injections are generally required to obtain sufficient MR signals after nuclear imaging. Here, we show that strategically engineered magnetoferritin nanoprobes can image tumors with high sensitivity and specificity using SPECT and MRI in living mice after a single intravenous injection. The magnetoferritin nanoprobes composed of (125)I radionuclide-conjugated human H-ferritin iron nanocages ((125)I-M-HFn) internalize robustly into cancer cells via a novel tumor-specific HFn-TfR1 pathway. In particular, the endocytic recycling characteristic of TfR1 transporters solves the nuclear signal blocking issue caused by the high dose nanoprobes injected for MRI, thus enabling simultaneous functional and morphological tumor imaging without reliance on multi-injections.


European Journal of Cancer | 2009

The ratio of maximum percent tumour accumulations of the pretargeting agent and the radiolabelled effector is independent of tumour size

Guozheng Liu; Shuping Dou; Minmin Liang; Xiangji Chen; Mary Rusckowski; Donald J. Hnatowich

Our previous studies have indicated that the optimal dosage ratio of pretargeting antibody to effector is proportional to their maximum percent tumour accumulations (MPTAs). This study quantitatively describes how both MPTAs and their ratio change with tumour size, to simplify pretargeting optimisation when tumour size varies. The CC49 antibody dosages below saturation of the tumour antigen level were first examined for the LS174T tumour mouse model. Then the MPTAs of the antibody in mice bearing tumours of different sizes were determined, always at antibody dosages below antigen saturation. Historical data from this laboratory were used to collect the MPTAs of the (99m)Tc-cMORF effector for different tumour sizes, always at effector dosages below that required to saturate the MORF in tumour. The MPTAs versus tumour sizes for both the antibody and the effector were fitted non-linearly. The best fit of the antibody MPTA (Y(antibody)) with tumour size (x) in grams was Y(antibody)=19.00 x(-0.65) while that for the effector was Y(effector)=4.51x(-0.66). Thus, even though the MPTAs of both vary with tumour size, the ratio (Y(antibody)/Y(effector)) is a constant at 4.21. In conclusion, the MPTA ratio of the antibody to the effector was found to be constant with tumour size, an observation that will simplify pretargeting optimisation because remeasurement of the optimum dosage ratio for different tumour sizes can be avoided. Theoretical considerations also suggest that this relationship may be universal for alternative antibody/effector pairs and for different target models, but this must be experimentally confirmed.

Collaboration


Dive into the Minmin Liang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary Rusckowski

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Guozheng Liu

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Shuping Dou

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Xinrong Liu

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Donald J. Hnatowich

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Ling Chen

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Kelong Fan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiyun Yan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge