Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Minnie Hsieh is active.

Publication


Featured researches published by Minnie Hsieh.


Molecular and Cellular Biology | 2007

Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation.

Minnie Hsieh; Daekee Lee; Sara Panigone; Kathleen Horner; Ruby Chen; Alekos Theologis; David C. Lee; David W. Threadgill; Marco Conti

ABSTRACT In the preovulatory ovarian follicle, mammalian oocytes are maintained in prophase meiotic arrest until the luteinizing hormone (LH) surge induces reentry into the first meiotic division. Dramatic changes in the somatic cells surrounding the oocytes and in the follicular wall are also induced by LH and are necessary for ovulation. Here, we provide genetic evidence that LH-dependent transactivation of the epidermal growth factor receptor (EGFR) is indispensable for oocyte reentry into the meiotic cell cycle, for the synthesis of the extracellular matrix surrounding the oocyte that causes cumulus expansion, and for follicle rupture in vivo. Mice deficient in either amphiregulin or epiregulin, two EGFR ligands, display delayed or reduced oocyte maturation and cumulus expansion. In compound-mutant mice in which loss of one EGFR ligand is associated with decreased signaling from a hypomorphic allele of the EGFR, LH no longer signals oocyte meiotic resumption. Moreover, induction of genes involved in cumulus expansion and follicle rupture is compromised in these mice, resulting in impaired ovulation. Thus, these studies demonstrate that LH induction of epidermal growth factor-like growth factors and EGFR transactivation are essential for the regulation of a critical physiological process such as ovulation and provide new strategies for manipulation of fertility.


Biology of Reproduction | 2009

Cyclic GMP Signaling Is Involved in the Luteinizing Hormone-Dependent Meiotic Maturation of Mouse Oocytes

Sergio Vaccari; James L. Weeks; Minnie Hsieh; Frank S. Menniti; Marco Conti

It is well established that cAMP signaling is an important regulator of the oocyte meiotic cell cycle. Conversely, the function of cGMP during oocyte maturation is less clear. Herein, we evaluated the expression of cGMP-hydrolyzing phosphodiesterases (PDEs) in the somatic and germ cell compartments of the mouse ovarian follicle and demonstrate that PDE5 is preferentially expressed in somatic cells. Cyclic GMP is a potent inhibitor of cAMP hydrolysis from oocyte extracts, with a 50% inhibitory concentration of 97 nM. Luteinizing hormone (LH) stimulation of cultured preovulatory follicles results in a marked decrease in cGMP content, and a nadir is reached in 1.5 h; similarly, oocyte cGMP levels decrease after gonadotropin stimulation in vivo. The LH-dependent decrease in cGMP requires activation of the epidermal growth factor network. Treatment of follicles with a PDE5 inhibitor increases cGMP in the follicle well above unstimulated levels. Although LH causes a decrease in cGMP in follicles preincubated with PDE5 inhibitors, the levels of this nucleotide remain above unstimulated levels. Under these conditions of elevated cGMP, LH stimulation does not cause oocyte maturation after 5 h of incubation. Microinjection of a cGMP-specific PDE into oocytes causes meiotic maturation of wild-type oocytes, suggesting that an intraoocyte pool of cGMP is involved in the maintenance of meiotic arrest. This effect is absent in PDE3A-deficient oocytes. Taken together, these findings provide evidence that cGMP and cAMP signaling cooperate in maintaining meiotic arrest via regulation of PDE3A and that a decrease in cGMP in the somatic compartment is one of the signals contributing to meiotic maturation.


Molecular and Cellular Endocrinology | 2012

Novel signaling mechanisms in the ovary during oocyte maturation and ovulation.

Marco Conti; Minnie Hsieh; A. Musa Zamah; Jeong Su Oh

During the peri-ovulatory period, the gonadotropin LH triggers major changes in both the somatic and germ cell compartments of the ovarian follicle. The oocyte completes the meiotic cell cycle to become a fertilizable egg, and dramatic changes in gene expression and secretion take place in the somatic compartment of the follicle in preparation for follicular rupture and oocyte release. The concerted changes are regulated by activation of intracellular signaling pathways as well as paracrine and autocrine regulatory loops. This review will provide a summary of the current knowledge of the molecular events triggered by LH focusing mostly on the signaling pathways required for oocyte maturation.


Molecular Endocrinology | 2008

Luteinizing Hormone Signaling in Preovulatory Follicles Involves Early Activation of the Epidermal Growth Factor Receptor Pathway

Sara Panigone; Minnie Hsieh; Maoyong Fu; Luca Persani; Marco Conti

LH activates a cascade of signaling events that are propagated throughout the ovarian preovulatory follicle to promote ovulation of a mature egg. Critical to LH-induced ovulation is the induction of epidermal growth factor (EGF)-like growth factors and transactivation of EGF receptor (EGFR) signaling. Because the timing of this transactivation has not been well characterized, we investigated the dynamics of LH regulation of the EGF network in cultured follicles. Preovulatory follicles were cultured with or without recombinant LH and/or specific inhibitors. EGFR and MAPK phosphorylation were examined by immunoprecipitation and Western blot analyses. By semiquantitative RT-PCR, increases in amphiregulin and epiregulin mRNAs were detected 30 min after recombinant LH stimulation of follicles and were maximal after 2 h. LH-induced EGFR phosphorylation also increased after 30 min and reached a maximum at 2 h. EGFR activation precedes oocyte maturation and is cAMP dependent, because forskolin similarly activated EGFR. LH-induced EGFR phosphorylation was sensitive to AG1478, an EGFR kinase inhibitor, and to inhibitors of matrix metalloproteases GM6001 and TNFalpha protease inhibitor-1 (TAPI-1), suggesting the involvement of EGF-like growth factor shedding. LH- but not amphiregulin-induced oocyte maturation and EGFR phosphorylation were sensitive to protein synthesis inhibition. When granulosa cells were cultured with a combination of neutralizing antibodies against amphiregulin, epiregulin, and betacellulin, EGFR phosphorylation and MAPK activation were inhibited. In cultured follicles, LH-induced MAPK activation was partially inhibited by AG1478 and GM6001, indicating that this pathway is regulated in part by the EGF network but also involves additional pathways. Thus, complex mechanisms are involved in the rapid amplification and propagation of the LH signal within preovulatory follicles and include the early activation of the EGF network.


Seminars in Reproductive Medicine | 2009

Epidermal Growth Factor-Like Growth Factors in the Follicular Fluid: Role in Oocyte Development and Maturation

Minnie Hsieh; A. Musa Zamah; Marco Conti

The growth and maturation of the ovarian follicle requires the coordinate function of somatic cells and the oocyte. Over the past three decades, numerous growth factors involved in the bidirectional signals between the somatic and germ cells have been identified. A possible function of epidermal growth factor (EGF) signaling at selected stages of follicle maturation had been proposed early on and is supported by many observations of in vitro effects of this growth factor on steroidogenesis, oocyte maturation, and cumulus expansion. However, attempts to link EGF levels in the follicular fluid with the state of follicle and oocyte maturation have been inconclusive. More recently, data generated using mouse genetic models perturbing ovulation and fertility indicate that EGF-like growth factors, rather than EGF itself, accumulate in the follicle at the time of ovulation. EGF-like growth factor mRNA is regulated by the luteinizing hormone surge, and corresponding proteins are detected in the follicle. The EGF-like growth factors amphiregulin, epiregulin, and betacellulin are potent stimulators of oocyte maturation and cumulus expansion, and perturbation of this EGF network in vivo impairs ovulation. Similar findings in species other than the mouse confirm an important physiological role for this network at the time of ovulation. Whether this network also plays a critical role in humans and whether it can be used as a biological marker of follicle development or for the improvement of fertility remains to be determined. This review summarizes the most recent findings on the EGF network during ovulation and the potential clinical applications of manipulating this intercellular communication pathway in the control of fertility.


PLOS ONE | 2011

Genetic dissection of epidermal growth factor receptor signaling during luteinizing hormone-induced oocyte maturation.

Minnie Hsieh; Kao Thao; Marco Conti

Recent evidence that luteinizing hormone (LH) stimulation of ovulatory follicles causes transactivation of the epidermal growth factor receptor (EGFR) has provided insights into the mechanisms of ovulation. However, the complete array of signals that promote oocyte reentry into the meiotic cell cycle in the follicle are still incompletely understood. To elucidate the signaling downstream of EGFR involved in oocyte maturation, we have investigated the LH responses in granulosa cells with targeted ablation of EGFR. Oocyte maturation and ovulation is disrupted when EGFR expression is progressively reduced. In granulosa cells from mice with either global or granulosa cell-specific disruption of EGFR signaling, LH-induced phosphorylation of MAPK3/1, p38MAPK, and connexin-43 is impaired. Although the LH-induced decrease in cGMP is EGFR-dependent in wild type follicles, LH still induces a decrease in cGMP in Egfrdelta/f Cyp19-Cre follicles. Thus compensatory mechanisms appear activated in the mutant. Spatial propagation of the LH signal in the follicle also is dependent on the EGF network, and likely is important for the control of signaling to the oocyte. Thus, multiple signals and redundant pathways contribute to regulating oocyte reentry into the cell cycle.


Human Reproduction | 2010

Human oocyte maturation is dependent on LH-stimulated accumulation of the epidermal growth factor-like growth factor, amphiregulin

A.M. Zamah; Minnie Hsieh; J. Chen; J.L. Vigne; M.P. Rosen; Marcelle I. Cedars; Marco Conti

BACKGROUND The LH surge promotes ovulation via activation of multiple signaling networks in the ovarian follicle. Studies in animal models have shown the importance of LH-induced activation of the epidermal growth factor (EGF)signaling network in critical peri-ovulatory events. We investigated the biological significance of regulatory mechanisms mediated by EGF-like growth factors during LH stimulation in humans. METHODS We characterized the EGF signaling network in mature human ovarian follicles using in vivo and in vitro approaches. Amphiregulin (AREG) levels were measured in 119 follicular fluid (FF) samples from IVF/ICSI patients. Biological activity of human FF was assessed using in vitro oocyte maturation, cumulus expansion and cell mitogenic assays. RESULTS AREG is the most abundant EGF-like growth factor accumulating in the FF of mature follicles of hCG-stimulated patients. No AREG was detected before the LH surge or before hCG stimulation of granulosa cells in vitro, demonstrating that the accumulation of AREG requires gonadotrophin stimulation. Epiregulin and betacellulin mRNA were detected in both human mural and cumulus granulosa cells, although at significantly lower levels than AREG. FF from stimulated follicles causes cumulus expansion and oocyte maturation in a reconstitution assay. Immunodepletion of AREG abolishes the ability of FF to stimulate expansion (P < 0.0001) and oocyte maturation (P < 0.05), confirming the biological activity of AREG. Conversely, mitogenic activity of FF remained after depletion of AREG, indicating that other mitogens accumulate in FF. FF from follicles yielding an immature germinal vesicle oocyte or from an oocyte that develops into an aberrant embryo contains lower AREG levels than that from follicles yielding a healthy oocyte (P = 0.008). CONCLUSIONS EGF-like growth factors play a role in critical peri-ovulatory events in humans, and AREG accumulation is a useful marker of gonadotrophin stimulation and oocyte competence.


Trends in Endocrinology and Metabolism | 2005

G-protein-coupled receptor signaling and the EGF network in endocrine systems

Minnie Hsieh; Marco Conti

The epidermal growth factor (EGF) network is composed of a complex array of growth factors synthesized as precursors and expressed on the cell surface. These latent growth factors are activated by cleavage and shedding from the cell surface and act by binding to various homo- and hetero-dimers of the EGF receptors (ErbBs). Although the exact molecular steps are poorly understood, ligand binding to G-protein-coupled receptors as diverse as the beta-adrenoceptors or the lysophosphatidic acid receptors leads to shedding of EGF growth factors and activation of EGF receptors. Recent observations from the pituitary and in the ovary are providing new insight into the role of this network in endocrine systems.


Biology of Reproduction | 2010

Lack of Functional Pregnancy-Associated Plasma Protein-A (PAPPA) Compromises Mouse Ovarian Steroidogenesis and Female Fertility

Mette Nyegaard; Michael Toft Overgaard; You Qiang Su; Amy E. Hamilton; Jakub Kwintkiewicz; Minnie Hsieh; Nihar R. Nayak; Marco Conti; Cheryl A. Conover; Linda C. Giudice

The insulin-like growth factor (IGF) system plays an important role in regulating ovarian follicular development and steroidogenesis. IGF binding proteins (IGFBP) mostly inhibit IGF actions, and IGFBP proteolysis is a major mechanism for regulating IGF bioavailability. Pregnancy-associated plasma protein-A (PAPPA) is a secreted metalloprotease responsible for cleavage of IGFBP4 in the ovary. The aim of this study was to investigate whether PAPPA plays a role in regulating ovarian functions and female fertility by comparing the reproductive phenotype of wild-type (WT) mice with mice heterozygous or homozygous for a targeted Pappa gene deletion (heterozygous and PAPP-A knockout [KO] mice, respectively). When mated with WT males, PAPP-A KO females demonstrated an overall reduction in average litter size. PAPP-A KO mice had a reduced number of ovulated oocytes, lower serum estradiol levels following equine chorionic gonadotropin administration, lower serum progesterone levels after human chorionic gonadotropin injection, and reduced expression of ovarian steroidogenic enzyme genes, compared to WT controls. In PAPP-A KO mice, inhibitory IGFBP2, IGFBP3, and IGFBP4 ovarian gene expression was reduced postgonadotropin stimulation, suggesting some compensation within the ovarian IGF system. Expression levels of follicle-stimulating hormone receptor, luteinizing hormone receptor, and genes required for cumulus expansion were not affected. Analysis of preovulatory follicular fluid showed complete loss of IGFBP4 proteolytic activity in PAPP-A KO mice, demonstrating no compensation for loss of PAPPA proteolytic activity by other IGFBP proteases in vivo in the mouse ovary. Taken together, these data demonstrate an important role of PAPPA in modulating ovarian function and female fertility by control of the bioavailability of ovarian IGF.


Human Molecular Genetics | 2013

A novel loss-of-function mutation in Npr2 clarifies primary role in female reproduction and reveals a potential therapy for acromesomelic dysplasia, Maroteaux type

Krista A. Geister; Michelle L. Brinkmeier; Minnie Hsieh; Susan M. Faust; I. Jill Karolyi; Joseph E. Perosky; Kenneth M. Kozloff; Marco Conti; Sally A. Camper

We discovered a new spontaneous mutant allele of Npr2 named peewee (pwe) that exhibits severe disproportionate dwarfism and female infertility. The pwe phenotype is caused by a four base-pair deletion in exon 3 that generates a premature stop codon at codon 313 (L313X). The Npr2(pwe/pwe) mouse is a model for the human skeletal dysplasia acromesomelic dysplasia, Maroteaux type (AMDM). We conducted a thorough analysis of the female reproductive tract and report that the primary cause of Npr2(pwe/pwe) female infertility is premature oocyte meiotic resumption, while the pituitary and uterus appear to be normal. Npr2 is expressed in chondrocytes and osteoblasts. We determined that the loss of Npr2 causes a reduction in the hypertrophic and proliferative zones of the growth plate, but mineralization of skeletal elements is normal. Mutant tibiae have increased levels of the activated form of ERK1/2, consistent with the idea that natriuretic peptide receptor type 2 (NPR2) signaling inhibits the activation of the MEK/ERK mitogen activated protein kinase pathway. Treatment of fetal tibiae explants with mitogen activated protein kinase 1 and 2 inhibitors U0126 and PD325901 rescues the Npr2(pwe/pwe) growth defect, providing a promising foundation for skeletal dysplasia therapeutics.

Collaboration


Dive into the Minnie Hsieh's collaboration.

Top Co-Authors

Avatar

Marco Conti

University of California

View shared research outputs
Top Co-Authors

Avatar

A.M. Zamah

University of California

View shared research outputs
Top Co-Authors

Avatar

J. Chen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.P. Rosen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Musa Zamah

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge