Minoru S.H. Ko
Keio University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Minoru S.H. Ko.
Nature Cell Biology | 2007
Shinji Masui; Yuhki Nakatake; Yayoi Toyooka; Daisuke Shimosato; Rika Yagi; Kazue Takahashi; Hitoshi Okochi; Akihiko Okuda; Ryo Matoba; Alexei A. Sharov; Minoru S.H. Ko; Hitoshi Niwa
The pluripotency of embryonic stem (ES) cells is thought to be maintained by a few key transcription factors, including Oct3/4 and Sox2. The function of Oct3/4 in ES cells has been extensively characterized, but that of Sox2 has yet to be determined. Sox2 can act synergistically with Oct3/4 in vitro to activate Oct–Sox enhancers, which regulate the expression of pluripotent stem cell-specific genes, including Nanog, Oct3/4 and Sox2 itself. These findings suggest that Sox2 is required by ES cells for its Oct–Sox enhancer activity. Using inducible Sox2-null mouse ES cells, we show that Sox2 is dispensable for the activation of these Oct–Sox enhancers. In contrast, we demonstrate that Sox2 is necessary for regulating multiple transcription factors that affect Oct3/4 expression and that the forced expression of Oct3/4 rescues the pluripotency of Sox2-null ES cells. These results indicate that the essential function of Sox2 is to stabilize ES cells in a pluripotent state by maintaining the requisite level of Oct3/4 expression.
Developmental Cell | 2004
Toshio Hamatani; Mark G. Carter; Alexei A. Sharov; Minoru S.H. Ko
Understanding preimplantation development is important both for basic reproductive biology and for practical applications including regenerative medicine and livestock breeding. Global expression profiles revealed and characterized the distinctive patterns of maternal RNA degradation and zygotic gene activation, including two major transient waves of de novo transcription. The first wave corresponds to zygotic genome activation (ZGA); the second wave, named mid-preimplantation gene activation (MGA), precedes the dynamic morphological and functional changes from the morula to blastocyst stage. Further expression profiling of embryos treated with inhibitors of transcription, translation, and DNA replication revealed that the translation of maternal RNAs is required for the initiation of ZGA. We propose a cascade of gene activation from maternal RNA/protein sets to ZGA gene sets and thence to MGA gene sets. The large number of genes identified as involved in each phase is a first step toward analysis of the complex gene regulatory networks.
Mammalian Genome | 1994
L. B. Rowe; Joe Nadeau; R. Turner; Wayne N. Frankel; Verity A. Letts; J. T. Eppig; Minoru S.H. Ko; S. J. Thurston; Edward H. Birkenmeier
We established two mouse interspecific backcross DNA panels, one containing 94 N2 animals from the cross (C57BL/6J × Mus spretus)F1 × C57BL/6J, and another from 94 N2 animals from the reciprocal backcross (C57BL/6J × SPRET/Ei)F1 × SPRET/Ei. We prepared large quantities of DNA from most tissues of each animal to create a community resource of interspecific backcross DNA for use by laboratories interested in mapping loci in the mouse. Initial characterization of the genetic maps of both panels has been completed. We used MIT SSLP markers, proviral loci, and several other sequence-defined genes to anchor our maps to other published maps. The BSB panel map (from the backcross to C57BL/6J) contains 215 loci and is anchored by 45 SSLP and 32 gene sequence loci. The BSS panel map (from the backcross to SPRET/Ei) contains 451 loci and is anchored by 49 SSLP loci, 43 proviral loci, and 60 gene sequence loci. To obtain a high density of markers, we used motif-primed PCR to “fingerprint” the panel DNAs. We constructed two maps, each representing one of the two panels. All new loci can be located with a high degree of certainty on the maps at current marker density. Segregation patterns in these data reveal several examples of transmission ratio distortion and permit analysis of the distribution of crossovers on individual chromosomes.
DNA Research | 2009
Lioudmila V. Sharova; Alexei A. Sharov; Timur Nedorezov; Yulan Piao; Nabeebi Shaik; Minoru S.H. Ko
Degradation of mRNA is one of the key processes that control the steady-state level of gene expression. However, the rate of mRNA decay for the majority of genes is not known. We successfully obtained the rate of mRNA decay for 19 977 non-redundant genes by microarray analysis of RNA samples obtained from mouse embryonic stem (ES) cells. Median estimated half-life was 7.1 h and only <100 genes, including Prdm1, Myc, Gadd45 g, Foxa2, Hes5 and Trib1, showed half-life less than 1 h. In general, mRNA species with short half-life were enriched among genes with regulatory functions (transcription factors), whereas mRNA species with long half-life were enriched among genes related to metabolism and structure (extracellular matrix, cytoskeleton). The stability of mRNAs correlated more significantly with the structural features of genes than the function of genes: mRNA stability showed the most significant positive correlation with the number of exon junctions per open reading frame length, and negative correlation with the presence of PUF-binding motifs and AU-rich elements in 3′-untranslated region (UTR) and CpG di-nucleotides in the 5′-UTR. The mRNA decay rates presented in this report are the largest data set for mammals and the first for ES cells.
PLOS Genetics | 2005
Jacob M. Zahn; Suresh Poosala; Art B. Owen; Donald K. Ingram; Ana Lustig; Arnell Carter; Ashani T. Weeraratna; Dennis D. Taub; Myriam Gorospe; Krystyna Mazan-Mamczarz; Edward G. Lakatta; Kenneth R. Boheler; Xiangru Xu; Mark P. Mattson; Geppino Falco; Minoru S.H. Ko; David Schlessinger; Jeffrey Firman; Sarah K. Kummerfeld; William H. Wood; Alan B. Zonderman; Stuart K. Kim; Kevin G. Becker
We present the AGEMAP (Atlas of Gene Expression in Mouse Aging Project) gene expression database, which is a resource that catalogs changes in gene expression as a function of age in mice. The AGEMAP database includes expression changes for 8,932 genes in 16 tissues as a function of age. We found great heterogeneity in the amount of transcriptional changes with age in different tissues. Some tissues displayed large transcriptional differences in old mice, suggesting that these tissues may contribute strongly to organismal decline. Other tissues showed few or no changes in expression with age, indicating strong levels of homeostasis throughout life. Based on the pattern of age-related transcriptional changes, we found that tissues could be classified into one of three aging processes: (1) a pattern common to neural tissues, (2) a pattern for vascular tissues, and (3) a pattern for steroid-responsive tissues. We observed that different tissues age in a coordinated fashion in individual mice, such that certain mice exhibit rapid aging, whereas others exhibit slow aging for multiple tissues. Finally, we compared the transcriptional profiles for aging in mice to those from humans, flies, and worms. We found that genes involved in the electron transport chain show common age regulation in all four species, indicating that these genes may be exceptionally good markers of aging. However, we saw no overall correlation of age regulation between mice and humans, suggesting that aging processes in mice and humans may be fundamentally different.
Bioinformatics | 2005
Alexei A. Sharov; Dawood B. Dudekula; Minoru S.H. Ko
UNLABELLED We have developed a program for microarray data analysis, which features the false discovery rate for testing statistical significance and the principal component analysis using the singular value decomposition method for detecting the global trends of gene-expression patterns. Additional features include analysis of variance with multiple methods for error variance adjustment, correction of cross-channel correlation for two-color microarrays, identification of genes specific to each cluster of tissue samples, biplot of tissues and corresponding tissue-specific genes, clustering of genes that are correlated with each principal component (PC), three-dimensional graphics based on virtual reality modeling language and sharing of PC between different experiments. The software also supports parameter adjustment, gene search and graphical output of results. The software is implemented as a web tool and thus the speed of analysis does not depend on the power of a client computer. AVAILABILITY The tool can be used on-line or downloaded at http://lgsun.grc.nia.nih.gov/ANOVA/
Molecular and Cellular Biology | 2006
Yuhki Nakatake; Nobutaka Fukui; Yuko Iwamatsu; Shinji Masui; Kadue Takahashi; Rika Yagi; Kiyohito Yagi; Jun-ichi Miyazaki; Ryo Matoba; Minoru S.H. Ko; Hitoshi Niwa
ABSTRACT Although the POU transcription factor Oct3/4 is pivotal in maintaining self renewal of embryonic stem (ES) cells, little is known of its molecular mechanisms. We previously reported that the N-terminal transactivation domain of Oct3/4 is required for activation of Lefty1 expression (H. Niwa, S. Masui, I. Chambers, A. G. Smith, and J. Miyazaki, Mol. Cell. Biol. 22:1526-1536, 2002). Here we test whether Lefty1 is a direct target of Oct3/4. We identified an ES cell-specific enhancer upstream of the Lefty1 promoter that contains binding sites for Oct3/4 and Sox2. Unlike other known Oct3/4-Sox2-dependent enhancers, however, this enhancer element could not be activated by Oct3/4 and Sox2 in differentiated cells. By functional screening of ES-specific transcription factors, we found that Krüppel-like factor 4 (Klf4) cooperates with Oct3/4 and Sox2 to activate Lefty1 expression, and that Klf4 acts as a mediating factor that specifically binds to the proximal element of the Lefty1 promoter. DNA microarray analysis revealed that a subset of putative Oct3/4 target genes may be regulated in the same manner. Our findings shed light on a novel function of Oct3/4 in ES cells.
Nature | 2010
Michal Zalzman; Geppino Falco; Lioudmila V. Sharova; Akira Nishiyama; Marshall Thomas; Sung Lim Lee; Carole A. Stagg; Hien G. Hoang; Hsih Te Yang; Fred E. Indig; Robert P. Wersto; Minoru S.H. Ko
Exceptional genomic stability is one of the hallmarks of mouse embryonic stem (ES) cells. However, the genes contributing to this stability remain obscure. We previously identified Zscan4 as a specific marker for two-cell embryo and ES cells. Here we show that Zscan4 is involved in telomere maintenance and long-term genomic stability in ES cells. Only 5% of ES cells express Zscan4 at a given time, but nearly all ES cells activate Zscan4 at least once during nine passages. The transient Zscan4-positive state is associated with rapid telomere extension by telomere recombination and upregulation of meiosis-specific homologous recombination genes, which encode proteins that are colocalized with ZSCAN4 on telomeres. Furthermore, Zscan4 knockdown shortens telomeres, increases karyotype abnormalities and spontaneous sister chromatid exchange, and slows down cell proliferation until reaching crisis by passage eight. Together, our data show a unique mode of genome maintenance in ES cells.
PLOS Biology | 2010
Maurice A. Canham; Alexei A. Sharov; Minoru S.H. Ko; Joshua M. Brickman
Detection of low-level, lineage-specific transcription aids in the identification of lineage-primed populations of ES cells provides a new framework for pluripotency.
Science | 2011
Youngjo Kim; Alexei A. Sharov; Katie McDole; Melody Cheng; Haiping Hao; Chen-Ming Fan; Nicholas Gaiano; Minoru S.H. Ko; Yixian Zheng
Mice lacking critical structural components of the nucleus, lamin-B intermediate filament proteins, remain viable until birth. B-type lamins, the major components of the nuclear lamina, are believed to be essential for cell proliferation and survival. We found that mouse embryonic stem cells (ESCs) do not need any lamins for self-renewal and pluripotency. Although genome-wide lamin-B binding profiles correlate with reduced gene expression, such binding is not directly required for gene silencing in ESCs or trophectoderm cells. However, B-type lamins are required for proper organogenesis. Defects in spindle orientation in neural progenitor cells and migration of neurons probably cause brain disorganizations found in lamin-B null mice. Thus, our studies not only disprove several prevailing views of lamin-Bs but also establish a foundation for redefining the function of the nuclear lamina in the context of tissue building and homeostasis.