Minwei Chai
Peking University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Minwei Chai.
Marine Pollution Bulletin | 2014
Minwei Chai; Fuchen Shi; Ruili Li; Xiaoxue Shen
To investigate the effects of Spartina alterniflora on heavy metals pollution of intertidal sediments, sediment cores of a S. alterniflora salt marsh and a mudflat in Bohai Bay, China were analyzed. The results showed that S. alterniflora caused higher total C and P, but lower bulk density and electrical conductivity. The levels of Cd, Cu and Pb were higher in S. alterniflora sediment. Both Cd and Zn were higher than the probable effect level at both sites, indicating their toxicological importance. The geo-accumulation and potential ecological risk indexes revealed higher metal contamination in S. alterniflora sediment. Multivariate analysis implied that anthropogenic activities altered mobility and bioavailability of heavy metals. The percentage of mobile heavy metals was higher in S. alterniflora sediment, indicating improvement of conversion from the immobilized fraction to the mobilized fraction. These findings indicate that S. alterniflora may facilitate accumulation of heavy metals and increase their bioavailability and mobility.
Marine Pollution Bulletin | 2015
Minwei Chai; Xiaoxue Shen; Ruili Li; Guoyu Qiu
The risks of heavy metal in Futian mangrove forest sediment were assessed using the acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) methods. The results indicated that AVS distributions were more variable than the SEM distributions at all 16 sampling sites. The positive correlation between AVS and SEM indicated that their similar formative and existing conditions and that AVS acted as an important carrier for SEM. The major SEM component was Zn (69.7.3-94.2%), whereas the Cd contribution (the most toxic metal present) to SEM was no more than 1%. The possible adverse effects caused by heavy metals at ten sampling sites may be due to higher levels of SEMs, rather than AVSs. The total organic carbon (TOC) was an important metal-binding phase in the sediments. Taking into account the TOC concentration, there were no adverse effects due to heavy metals in any of the Futian mangrove forest sediments.
Environmental Science and Pollution Research | 2017
Ruili Li; Minwei Chai; Rongyu Li; Hualin Xu; Bei He; Guo Yu Qiu
To investigate the influence of Sonneratia apetala on nutrients and heavy metals in intertidal sediments, sediment cores of S. apetala marsh and mudflat in Shenzhen Bay, China were analyzed. The results showed that S. apetala improved sediment nutrient properties due to increased total carbon (TC), total nitrogen (TN), and total sulfur (TS). The levels of heavy metals were higher in S. apetala site than in mudflat, including chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg). In S. apetala site, TC, TN, and TS were not positively correlated with Cr, Ni, As, Cd, and Pb, indicating their less important roles in trapping heavy metals. There were positive correlations among Ni, Cu, Zn, and Cd in both sites, suggesting similar anthropogenic source. Levels of As were higher than the probable effect level at both sites, indicating their toxicological importance. The geo-accumulation index and potential ecological risk index revealed higher metal contaminations in S. apetala site, especially for Cd, Hg, and As. Multivariate analysis implied that S. apetala alter the biogeochemical cycle of Cd and Cr to a certain extent. These findings indicate that S. apetala may improve soil nutrient properties and facilitate heavy metal accumulation in intertidal sediments.
Science of The Total Environment | 2019
Minwei Chai; Ruili Li; Cong Shi; Xiaoxue Shen; Rongyu Li; Qijie Zan
Mangroves are threatened due to urban development and human activities in coastal regions. Four urban mangroves in Shenzhen (rapidly developing city of China) were selected according to urban functional zoning, namely, Shajing mangrove (SJM) and Xixiang mangrove (XXM) featured with industry district, Futian mangrove (FTM) and Baguang mangrove (BGM) featured with central business district and ecological preserve. Eight BDE congeners (BDE-28, -47, -99, -100, -153, -154, -183, and -209) in mangrove sediments and leaves were determined. The highest level of BDE-209 in SJM was proximate to areas of point-source discharges of Dongbao River in Pearl River Estuary, China. Total organic carbon (TOC) was influential in BDE-209 accumulations in SJM, XXM, and FTM. Multiple variate analysis implied that PBDEs in SJM, XXM and FTM mainly composed of penta-, octa-, and deca-BDEs, with surface runoff to be the main contamination sources; while BGM was contaminated by penta- and octa-BDEs. Ecological risk of BDE-209 was high in SJM, with medium/negligible risk in the other urban mangroves. The transfers of BDE-209 from sediment to leaf were weak (BGM and FTM), improved (XXM), and restricted (SJM), respectively. This is the first reports of spatial distribution and bioaccumulation of PBDEs in urban mangroves featured with different urban functional zonings. More attention is required to reduce emission of PBDEs into the environment and manage PBDEs contamination in urban mangroves.
Environmental Geochemistry and Health | 2018
Rongyu Li; Guo Yu Qiu; Minwei Chai; Xiaoxue Shen; Qijie Zan
Mangroves are often converted into gei wai ponds for aquaculture, but how such conversion affects the accumulation and behavior of heavy metals in sediments is not clear. The present study aims to quantify the concentration and speciation of heavy metals in sediments in different habitats, including gei wai pond, mangrove marsh dominated by Avicennia marina and bare mudflat, in a mangrove nature reserve in South China. The results showed that gei wai pond acidified the sediment and reduced its electronic conductivity and total organic carbon (TOC) when compared to A. marina marsh and mudflat. The concentrations of Cd, Cu, Zn and Pb at all sediment depths in gei wai pond were lower than the other habitats, indicating gei wai pond reduced the fertility and the ability to retain heavy metals in sediment. Gei wai pond sediment also had a lower heavy metal pollution problem according to multiple evaluation methods, including potential ecological risk coefficient, potential ecological risk index, geo-accumulation index, mean PEL quotients, pollution load index, mean ERM quotients and total toxic unit. Heavy metal speciation analysis showed that gei wai pond increased the transfer of the immobilized fraction of Cd and Cr to the mobilized one. According to the acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) analysis, the conversion of mangroves into gei wai pond reduced values of ([SEM] − [AVS])/foc, and the role of TOC in alleviating heavy metal toxicity in sediment. This study demonstrated the conversion of mangrove marsh into gei wai pond not only reduced the ecological purification capacity on heavy metal contamination, but also enhanced the transfer of heavy metals from gei wai pond sediment to nearby habitats.
Environmental Geochemistry and Health | 2018
Minwei Chai; Ruili Li; N.F.Y. Tam; Qijie Zan
AbstractThe present study compared accumulation of heavy metals in a mangrove swamp dominated by Kandelia obovata with that by Sonneratia apetala in Pearl River Estuary, China. The results showed that the concentrations of heavy metals at all sediment depths in the S. apetala site were significantly higher than that in K. obovata. The geo-accumulation index and potential ecological risk index also showed that S. apetala sediment had a higher contamination of heavy metals, especially Cd. S. apetala significantly altered the biogeochemical cycles of Cd, lead (Pb), nickel (Ni) and chromium (Cr). In S. apetala sediment, TOC played an important role in sequestering heavy metals as reflected by its positive correlations with Zn and Pb. This study demonstrated the importance of plant species in altering soil quality and heavy metal accumulation, and S. apetala is more efficiently working as a pollution barrier than K. obovata.
Ecotoxicology and Environmental Safety | 2018
Minwei Chai; Rongyu Li; Xiaoxue Shen; N.F.Y. Tam; Qijie Zan; Ruili Li
Heavy metals and nutrients are commonly found in mangrove sediments, but the effect of nutrients on heavy metals in mangrove plants is not clear. A study quantifying the effects of ammonium nitrogen (NH4+-N) on the accumulation, subcellular distribution and chemical forms of cadmium (Cd) in Kandelia obovata seedlings were conducted. The experiment consisted of four levels of NH4+-N (0, 10, 50 and 100 mg L-1) in each of which consisted of four Cd levels (0, 1, 5 and 10 mg L-1). The results showed that NH4+-N magnified the Cd toxicity due to reduced plant biomass, especially with 10 mg L-1 Cd and 100 mg L-1 NH4+-N supply. NH4+-N, especially at 100 mg L-1, enhanced the concentration and accumulation of Cd in root but its role on Cd translocation from root to stem and leaf was limited, probably due to low translocation factor. At subcellular level, Cd mainly accumulated in root cell wall but its fractionation depended on Cd levels. Under the stress of 1 and 5 mg L-1 Cd, 50 mg L-1 NH4+-N supply improved transfer of Cd from root cell wall into cell, and increased pectate and protein integrated forms of intracellular Cd to alleviate Cd toxicity. Under the stress of 10 mg L-1 Cd, NH4+-N supply promoted the deposition of Cd on root cell wall to restrain its transfer to root cell, which was verified by the reduced levels of pectate and protein integrated forms of Cd in root cell. Thus, NH4+-N supply improved immobilization of Cd in roots and alleviated Cd toxicity through integration with pectate and protein as well as cell wall combinations in root of K. obovata.
Plant Growth Regulation | 2013
Minwei Chai; Fuchen Shi; Ruili Li; Limin Liu; Yue Liu; Fuchun Liu
South African Journal of Botany | 2013
Minwei Chai; Fuchen Shi; Ruili Li; F.C. Liu; Guoyu Qiu; L.M. Liu
Acta Physiologiae Plantarum | 2014
Minwei Chai; Fuchen Shi; Ruili Li; Guoyu Qiu; Fuchun Liu; Limin Liu