Minyan Wang
Xi'an Jiaotong-Liverpool University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Minyan Wang.
Frontiers in Systems Neuroscience | 2010
Claire L. Witham; Minyan Wang; Stuart N. Baker
Corticomuscular coherence has previously been reported between primary motor cortex (M1) and contralateral muscles. We examined whether such coherence could also be seen from somatosensory areas. Local field potentials (LFPs) were recorded from primary somatosensory cortex (S1; areas 3a and 2) and posterior parietal cortex (PPC; area 5) simultaneously with M1 LFP and forearm EMG activity in two monkeys during an index finger flexion task. Significant beta-band (∼20 Hz) corticomuscular coherence was found in all areas investigated. Directed coherence (Granger causality) analysis was used to investigate the direction of effects. Surprisingly, the strongest beta-band directed coherence was in the direction from S1/PPC to muscle; it was much weaker in the ascending direction. Examination of the phase of directed coherence provided estimates of the time delay from cortex to muscle. Delays were longer from M1 (∼62 ms for the first dorsal interosseous muscle) than from S1/PPC (∼36 ms). We then looked at coherence and directed coherence between M1 and S1 for clues to this discrepancy. Directed coherence showed large beta-band effects from S1/PPC to M1, with smaller directed coherence in the reverse direction. The directed coherence phase suggested a delay of ∼40 ms from M1 to S1. Corticomuscular coherence from S1/PPC could involve multiple pathways; the most important is probably common input from M1 to S1/PPC and muscles. If correct, this implies that somatosensory cortex receives oscillatory efference copy information from M1 about the motor command. This could allow sensory inflow to be interpreted in the light of its motor context.
Journal of Cerebral Blood Flow and Metabolism | 2002
Tihomir P. Obrenovitch; Jutta Urenjak; Minyan Wang
Cortical spreading depression (CSD) is a temporary disruption of local ionic homeostasis that propagates slowly across the cerebral cortex. Cortical spreading depression promotes lesion progression in experimental stroke, and may contribute to the initiation of migraine attacks. The purpose of this study was to investigate the roles of the marked increase of nitric oxide (NO) formation that occurs with CSD. Microdialysis electrodes were implanted in the cortex of anesthetized rats to perform the following operations within the same region: (1) elicitation of CSD by perfusion of high K+ medium; (2) recording of CSD elicitation; (3) application of the NO synthase inhibitor, NG-nitro-l-arginine methyl ester (l-NAME); and (4) recording of dialysate pH changes. The primary effect of l-NAME (0.3 to 3.0 mmol/L in the perfusion medium) was a marked widening of individual CSD wave, resulting essentially from a delayed initiation of the repolarization phase. This change was due to NO synthase inhibition because it was not observed with the inactive isomer d-NAME, and was reversed by l-arginine. This effect did not appear to be linked to the suppression of a sustained, NO-mediated vascular change associated with the superposition of NO synthase inhibition on high levels of extracellular K+. The delayed initiation of repolarization with local NO synthase inhibition may reflect the suppression of NO-mediated negative feedback mechanisms acting on neuronal or glial processes involved in CSD genesis. However, the possible abrogation of a very brief, NO-mediated vascular change associated with the early phase of CSD cannot be ruled out.
British Journal of Pharmacology | 2012
Minyan Wang; Paul L. Chazot; Sura Ali; Stevens F Duckett; Tihomir P. Obrenovitch
BACKGROUND AND PURPOSE Spreading depression (SD) is a local, temporary disruption of cellular ionic homeostasis that propagates slowly across the cerebral cortex and other neural tissues such as the retina. Spreading depolarization associated with SD occurs in different types of stroke, and this phenomenon correlates also with the initiation of classical migraine aura. The aim of this study was to investigate how NMDA receptor antagonists with different subtype selectivity alter SD.
Neuropharmacology | 2003
Minyan Wang; Tihomir P. Obrenovitch; Jutta Urenjak
Cortical spreading depression (CSD) is a transient disruption of local ionic homeostasis that may promote migraine attacks and the progression of stroke lesions. We reported previously that the local inhibition of nitric oxide (NO) synthesis with Nomega-nitro-L-arginine methyl ester (L-NAME) delayed markedly the initiation of the recovery of ionic homeostasis from CSD. Here we describe a novel method for selective, controlled generation of exogenous NO in a functioning brain region. It is based on microdialysis perfusion of the NO donor, 2-(N,N-diethylamino)-diazenolate-2-oxide (DEA/NO). As DEA/NO does not generate NO at alkaline pH, and as the brain has a strong acid-base buffering capacity, DEA/NO was perfused in a medium adjusted at alkaline (but unbuffered) pH. Without DEA/NO, such a microdialysis perfusion medium did not alter CSD. DEA/NO (1, 10 and 100 microM) had little effect on CSD by itself, but it reversed in a concentration-dependent manner the effects of NOS inhibition by 1 mM L-NAME. These data demonstrate that increased formation of endogenous NO associated with CSD is critical for subsequent, rapid recovery of cellular ionic homeostasis. In this case, the molecular targets for NO may be located either on brain cells to suppress mechanisms directly involved in CSD genesis, or on local blood vessels to couple flow to the increased energy demand associated with CSD.
Pharmacological Reports | 2016
Yan Wang; Yanli Li; Minyan Wang
BACKGROUND Cortical spreading depression (CSD) is a transient propagating excitation of synaptic activity followed by depression, which is implicated in migraine with aura and is regarded as the underlying cause of migraine. Calcitonin-gene related peptide (CGRP) receptors play a crucial role in mediating the magnitude of CSD in rat cortical slice. This study aimed to examine whether CGRP receptors are involved in retinal spreading depression (RSD) in chicks. METHODS Western blot was used for detection of calcitonin-receptor like receptor (CALCRL) and intrinsic optical imaging was used for pharmacological investigation. RESULTS We found that the key component of CGRP receptor, CALCRL, is expressed in the chick retina. Using an in vitro migraine RSD model, we demonstrated that BIBN4096, a potent antagonist for CGRP receptors, markedly reduced the magnitude of RSD induced by K(+), but also the propagation rate. CONCLUSIONS The data suggest that CGRP receptors mediate RSD propagation involving neuronal mechanism and approve that RSD is an efficient in vitro approach for assessing anti-migraine drugs targeting CGRP receptors.
Neuroscience | 2015
Minyan Wang; Y. Li; Y. Lin
Cortical spreading depression (SD) is a transient propagating neuronal excitation followed by depression, which is generally accepted as the underlying cause of migraine. The inhibitory γ-aminobutyric acid type A (GABAA) receptor activation not only reduces cortical SD frequency and propagation, but also relieves migraine headache. This study aims to determine the role of major α subtypes of GABAA receptor in mediating SD genesis and propagation using an efficient in vitro chick retinal model. We firstly demonstrated that abundant α2, and to a lesser extent, α5 of GABAA receptor expression in the chick retina, enabled the tissue useful for studying GABAA receptor pharmacology and SD. Marked suppression of SD by SL651498 and TPA023 was observed at 10 μmol L(-1) and 50 μmol L(-1), respectively, suggesting a critical role of GABAA receptor α subtypes, in particular α2, in modulating retinal SD elicitation and propagation. The negative data on NS11394 at 3 μmol L(-1) on SD and the little positive selectivity of TPA023 for α5 did not support that α5 subtype is involved in SD genesis and propagation. Our data provide strong evidence that α2, but not α5 is involved in the early stage of migraine, indicating that α2 subtype is a possible drug target related to migraine with aura.
Neuropeptides | 2013
Minyan Wang
Although detailed disease mechanisms of migraine remain poorly understood, migraine is known to have a complex pathophysiology with both vascular and neuronal mechanisms. The neuronal mechanisms of migraine may be attributed to cortical spreading depression (CSD); consequently, CSD has been widely studied for understanding the pathophysiology of migraine. Well validated CSD models have been developed for evaluating anti-migraine drugs. Neuropeptides, mainly, calcitonin gene-related peptide (CGRP), have been proposed as an emerging class of effective drugs against migraine headache. The central role of this neuropeptide has led to research into CSD for understanding disease mechanisms of migraine. This review briefly summarizes our current understanding of CSD and CGRP involvement in CSD. Although CSD can also worsen strokes, this brief paper has excluded the possible connection between the neuropeptide and CSD associated with them. Instead it has focused solely on CGRP in CSD associated with migraine.
Scientific Reports | 2016
Fan Bu; Ruoxing Du; Yi Li; John P. Quinn; Minyan Wang
Cortical spreading depression (CSD) is a transient propagating excitation of synaptic activity followed by depression, which is implicated in migraine. Increasing evidence points to an essential role of NR2A-containing NMDA receptors in CSD propagation in vitro; however, whether these receptors mediate CSD genesis in vivo requires clarification and the role of NR2A on CSD propagation is still under debate. Using in vivo CSD in rats with electrophysiology and in vitro CSD in chick retina with intrinsic optical imaging, we addressed the role of NR2A in CSD. We demonstrated that NVP-AAM077, a potent antagonist for NR2A-containing receptors, perfused through microdialysis probes, markedly reduced cortex susceptibility to CSD, but also reduced magnitude of CSD genesis in rats. Additionally, NVP-AAM077 at 0.3 nmol perfused into the contralateral ventricle, considerably suppressed the magnitude of CSD propagation wave and propagation rate in rats. This reduction in CSD propagation was also observed with TCN-201, a negative allosteric modulator selective for NR2A, at 3 μM, in the chick retina. Our data provides strong evidence that NR2A subunit contributes to CSD genesis and propagation, suggesting drugs selectively antagonizing NR2A-containing receptors might constitute a highly specific strategy treating CSD associated migraine with a likely better safety profile.
Cephalalgia | 2016
Yan Wang; Anne E Tye; Junli Zhao; Dongqing Ma; Ann C. Raddant; Fan Bu; Benjamin L Spector; Nolan K Winslow; Minyan Wang; Andrew F. Russo
Objective The neuropeptide calcitonin gene-related peptide (CGRP) has now been established as a key player in migraine. However, the mechanisms underlying the reported elevation of CGRP in the serum and cerebrospinal fluid of some migraineurs are not known. A candidate mechanism is cortical spreading depression (CSD), which is associated with migraine with aura and traumatic brain injury. The aim of this study was to investigate whether CGRP gene expression may be induced by experimental CSD in the rat cerebral cortex. Methods CSD was induced by topical application of KCl and monitored using electrophysiological methods. Quantitative PCR and ELISA were used to measure CGRP mRNA and peptide levels in discrete ipsilateral and contralateral cortical regions of the rat brain 24 hours following CSD events and compared with sham treatments. Results The data show that multiple, but not single, CSD events significantly increase CGRP mRNA levels at 24 hours post-CSD in the ipsilateral rat cerebral cortex. Increased CGRP was observed in the ipsilateral frontal, motor, somatosensory, and visual cortices, but not the cingulate cortex, or contralateral cortices. CSD also induced CGRP peptide expression in the ipsilateral, but not contralateral, cortex. Conclusions Repeated CSD provides a mechanism for prolonged elevation of CGRP in the cerebral cortex, which may contribute to migraine and post-traumatic headache.
Cephalalgia | 2018
Fan Bu; Yan Wang; Liwen Jiang; Dongqing Ma; John P. Quinn; Minyan Wang
Objectives Sarcoma family kinase activity is associated with multiple diseases including ischemia and cancer; however, its role in the mechanism of migraine aura has been less well characterised. This study aims to investigate whether sarcoma family kinase is required for cortical spreading depression. Methods Cortical spreading depression was induced by topical application of K+ to the cerebral cortex and was monitored using electrophysiology in rats, and intrinsic optical signal in mouse brain slices. Drugs were perfused into the contralateral cerebral ventricle for pharmacological manipulations in rats. Western blot analysis was used for detecting the level of phosphorylated, and total, sarcoma family kinase in the ipsilateral cortex of rats. Key results The data demonstrate that a single cortical spreading depression in rats induced ipsilateral cortical sarcoma family kinase phosphorylation at the Y416 site. Deactivation of sarcoma family kinase by its inhibitor (3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-dpyrimidin-4-amine) suppressed the elevated enzyme activity and cortical susceptibility to cortical spreading depression. Interestingly, the inhibitory effect of the N-methyl-D-aspartate receptor antagonist NVP-AAM077 on cortical spreading depression was reversed by the sarcoma family kinase activator pYEEI (EPQY(PO3H2)EEEIPIYL), suggesting a link between this enzyme and N-methyl-D-aspartate receptors. Similarly, after deactivation of sarcoma family kinase, a reduction of sarcoma family kinase phosphorylation and cortical susceptibility to cortical spreading depression was observed with NVP-AAM077. Conclusions We conclude that activation of sarcoma family kinase is required for cortical spreading depression, and this process is regulated by recruiting N-methyl-D-aspartate receptors. This study provides novel insight for sarcoma family kinase function in the mechanism of migraine aura.