Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mio Mejima is active.

Publication


Featured researches published by Mio Mejima.


Nature Materials | 2010

Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines

Tomonori Nochi; Yoshikazu Yuki; Haruko Takahashi; Shin-ichi Sawada; Mio Mejima; Tomoko Kohda; Norihiro Harada; Il Gyu Kong; Ayuko Sato; Nobuhiro Kataoka; Daisuke Tokuhara; Shiho Kurokawa; Yuko Takahashi; Hideo Tsukada; Shunji Kozaki; Kazunari Akiyoshi; Hiroshi Kiyono

Nanotechnology is an innovative method of freely controlling nanometre-sized materials. Recent outbreaks of mucosal infectious diseases have increased the demands for development of mucosal vaccines because they induce both systemic and mucosal antigen-specific immune responses. Here we developed an intranasal vaccine-delivery system with a nanometre-sized hydrogel (nanogel) consisting of a cationic type of cholesteryl-group-bearing pullulan (cCHP). A non-toxic subunit fragment of Clostridium botulinum type-A neurotoxin BoHc/A administered intranasally with cCHP nanogel (cCHP-BoHc/A) continuously adhered to the nasal epithelium and was effectively taken up by mucosal dendritic cells after its release from the cCHP nanogel. Vigorous botulinum-neurotoxin-A-neutralizing serum IgG and secretory IgA antibody responses were induced without co-administration of mucosal adjuvant. Importantly, intranasally administered cCHP-BoHc/A did not accumulate in the olfactory bulbs or brain. Moreover, intranasally immunized tetanus toxoid with cCHP nanogel induced strong tetanus-toxoid-specific systemic and mucosal immune responses. These results indicate that cCHP nanogel can be used as a universal protein-based antigen-delivery vehicle for adjuvant-free intranasal vaccination.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination

Tomonori Nochi; Hidenori Takagi; Yoshikazu Yuki; Lijun Yang; Takehiro Masumura; Mio Mejima; Ushio Nakanishi; Akiko Matsumura; Akihiro Uozumi; Takachika Hiroi; Shigeto Morita; Kunisuke Tanaka; Fumio Takaiwa; Hiroshi Kiyono

Capable of inducing antigen-specific immune responses in both systemic and mucosal compartments without the use of syringe and needle, mucosal vaccination is considered ideal for the global control of infectious diseases. In this study, we developed a rice-based oral vaccine expressing cholera toxin B subunit (CTB) under the control of the endosperm-specific expression promoter 2.3-kb glutelin GluB-1 with codon usage optimization for expression in rice seed. An average of 30 μg of CTB per seed was stored in the protein bodies, which are storage organelles in rice. When mucosally fed, rice seeds expressing CTB were taken up by the M cells covering the Peyers patches and induced CTB-specific serum IgG and mucosal IgA antibodies with neutralizing activity. When expressed in rice, CTB was protected from pepsin digestion in vitro. Rice-expressed CTB also remained stable and thus maintained immunogenicity at room temperature for >1.5 years, meaning that antigen-specific mucosal immune responses were induced at much lower doses than were necessary with purified recombinant CTB. Because they require neither refrigeration (cold-chain management) nor a needle, these rice-based mucosal vaccines offer a highly practical and cost-effective strategy for orally vaccinating large populations against mucosal infections, including those that may result from an act of bioterrorism.


Journal of Experimental Medicine | 2007

A novel M cell–specific carbohydrate-targeted mucosal vaccine effectively induces antigen-specific immune responses

Tomonori Nochi; Yoshikazu Yuki; Akiko Matsumura; Mio Mejima; Kazutaka Terahara; Dong-Young Kim; Satoshi Fukuyama; Kiyoko Iwatsuki-Horimoto; Yoshihiro Kawaoka; Tomoko Kohda; Shunji Kozaki; Osamu Igarashi; Hiroshi Kiyono

Mucosally ingested and inhaled antigens are taken up by membranous or microfold cells (M cells) in the follicle-associated epithelium of Peyers patches or nasopharynx-associated lymphoid tissue. We established a novel M cell–specific monoclonal antibody (mAb NKM 16–2-4) as a carrier for M cell–targeted mucosal vaccine. mAb NKM 16–2-4 also reacted with the recently discovered villous M cells, but not with epithelial cells or goblet cells. Oral administration of tetanus toxoid (TT)– or botulinum toxoid (BT)–conjugated NKM 16–2-4, together with the mucosal adjuvant cholera toxin, induced high-level, antigen-specific serum immunoglobulin (Ig) G and mucosal IgA responses. In addition, an oral vaccine formulation of BT-conjugated NKM 16–2-4 induced protective immunity against lethal challenge with botulinum toxin. An epitope analysis of NKM 16–2-4 revealed specificity to an α(1,2)-fucose–containing carbohydrate moiety, and reactivity was enhanced under sialic acid–lacking conditions. This suggests that NKM 16–2-4 distinguishes α(1,2)-fucosylated M cells from goblet cells containing abundant sialic acids neighboring the α(1,2) fucose moiety and from non-α(1,2)-fucosylated epithelial cells. The use of NKM 16–2-4 to target vaccine antigens to the M cell–specific carbohydrate moiety is a new strategy for developing highly effective mucosal vaccines.


Journal of Immunology | 2008

Comprehensive Gene Expression Profiling of Peyer’s Patch M Cells, Villous M-Like Cells, and Intestinal Epithelial Cells

Kazutaka Terahara; Masato Yoshida; Osamu Igarashi; Tomonori Nochi; Gemilson Soares Pontes; Koji Hase; Hiroshi Ohno; Shiho Kurokawa; Mio Mejima; Naoko Takayama; Yoshikazu Yuki; Anson W. Lowe; Hiroshi Kiyono

Separate populations of M cells have been detected in the follicle-associated epithelium of Peyer’s patches (PPs) and the villous epithelium of the small intestine, but the traits shared by or distinguishing the two populations have not been characterized. Our separate study has demonstrated that a potent mucosal modulator cholera toxin (CT) can induce lectin Ulex europaeus agglutinin-1 and our newly developed M cell-specific mAb NKM 16-2-4-positive M-like cells in the duodenal villous epithelium. In this study, we determined the gene expression of PP M cells, CT-induced villous M-like cells, and intestinal epithelial cells isolated by a novel approach using FACS. Additional mRNA and protein analyses confirmed the specific expression of glycoprotein 2 and myristoylated alanine-rich C kinase substrate (MARCKS)-like protein by PP M cells but not CT-induced villous M-like cells. Comprehensive gene profiling also suggested that CT-induced villous M-like cells share traits of both PP M cells and intestinal epithelial cells, a finding that is supported by their unique expression of specific chemokines. The genome-wide assessment of gene expression facilitates discovery of M cell-specific molecules and enhances the molecular understanding of M cell immunobiology.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Secretory IgA-mediated protection against V. cholerae and heat-labile enterotoxin-producing enterotoxigenic Escherichia coli by rice-based vaccine.

Daisuke Tokuhara; Yoshikazu Yuki; Tomonori Nochi; Toshio Kodama; Mio Mejima; Shiho Kurokawa; Yuko Takahashi; Masanobu Nanno; Ushio Nakanishi; Fumio Takaiwa; Takeshi Honda; Hiroshi Kiyono

Cholera and enterotoxigenic Escherichia coli (ETEC) are among the most common causes of acute infantile gastroenteritis globally. We previously developed a rice-based vaccine that expressed cholera toxin B subunit (MucoRice-CTB) and had the advantages of being cold chain–free and providing protection against cholera toxin (CT)–induced diarrhea. To advance the development of MucoRice-CTB for human clinical application, we investigated whether the CTB-specific secretory IgA (SIgA) induced by MucoRice-CTB gives longstanding protection against diarrhea induced by Vibrio cholerae and heat-labile enterotoxin (LT)–producing ETEC (LT-ETEC) in mice. Oral immunization with MucoRice-CTB stored at room temperature for more than 3 y provided effective SIgA-mediated protection against CT- or LT-induced diarrhea, but the protection was impaired in polymeric Ig receptor–deficient mice lacking SIgA. The vaccine gave longstanding protection against CT- or LT-induced diarrhea (for ≥6 months after primary immunization), and a single booster immunization extended the duration of protective immunity by at least 4 months. Furthermore, MucoRice-CTB vaccination prevented diarrhea in the event of V. cholerae and LT-ETEC challenges. Thus, MucoRice-CTB is an effective long-term cold chain–free oral vaccine that induces CTB-specific SIgA-mediated longstanding protection against V. cholerae– or LT-ETEC–induced diarrhea.


Infection and Immunity | 2013

Nanogel-Based PspA Intranasal Vaccine Prevents Invasive Disease and Nasal Colonization by Streptococcus pneumoniae

Il Gyu Kong; Ayuko Sato; Yoshikazu Yuki; Tomonori Nochi; Haruko Takahashi; Shin-ichi Sawada; Mio Mejima; Shiho Kurokawa; Kazunari Okada; Shintaro Sato; David E. Briles; Jun Kunisawa; Yusuke Inoue; Masafumi Yamamoto; Kazunari Akiyoshi; Hiroshi Kiyono

ABSTRACT To establish a safer and more effective vaccine against pneumococcal respiratory infections, current knowledge regarding the antigens common among pneumococcal strains and improvements to the system for delivering these antigens across the mucosal barrier must be integrated. We developed a pneumococcal vaccine that combines the advantages of pneumococcal surface protein A (PspA) with a nontoxic intranasal vaccine delivery system based on a nanometer-sized hydrogel (nanogel) consisting of a cationic cholesteryl group-bearing pullulan (cCHP). The efficacy of the nanogel-based PspA nasal vaccine (cCHP-PspA) was tested in murine pneumococcal airway infection models. Intranasal vaccination with cCHP-PspA provided protective immunity against lethal challenge with Streptococcus pneumoniae Xen10, reduced colonization and invasion by bacteria in the upper and lower respiratory tracts, and induced systemic and nasal mucosal Th17 responses, high levels of PspA-specific serum immunoglobulin G (IgG), and nasal and bronchial IgA antibody responses. Moreover, there was no sign of PspA delivery by nanogel to either the olfactory bulbs or the central nervous system after intranasal administration. These results demonstrate the effectiveness and safety of the nanogel-based PspA nasal vaccine system as a universal mucosal vaccine against pneumococcal respiratory infection.


Journal of Clinical Investigation | 2013

Rice-based oral antibody fragment prophylaxis and therapy against rotavirus infection

Daisuke Tokuhara; Beatriz Álvarez; Mio Mejima; Tomoko Hiroiwa; Yuko Takahashi; Shiho Kurokawa; Masaharu Kuroda; Masaaki Oyama; Hiroko Kozuka-Hata; Tomonori Nochi; Hiroshi Sagara; Farah Aladin; Harold Marcotte; Leon G. J. Frenken; Miren Iturriza-Gomara; Hiroshi Kiyono; Lennart Hammarström; Yoshikazu Yuki

Rotavirus-induced diarrhea is a life-threatening disease in immunocompromised individuals and in children in developing countries. We have developed a system for prophylaxis and therapy against rotavirus disease using transgenic rice expressing the neutralizing variable domain of a rotavirus-specific llama heavy-chain antibody fragment (MucoRice-ARP1). MucoRice-ARP1 was produced at high levels in rice seeds using an overexpression system and RNAi technology to suppress the production of major rice endogenous storage proteins. Orally administered MucoRice-ARP1 markedly decreased the viral load in immunocompetent and immunodeficient mice. The antibody retained in vitro neutralizing activity after long-term storage (>1 yr) and boiling and conferred protection in mice even after heat treatment at 94°C for 30 minutes. High-yield, water-soluble, and purification-free MucoRice-ARP1 thus forms the basis for orally administered prophylaxis and therapy against rotavirus infections.


Journal of Immunology | 2009

A Rice-Based Oral Cholera Vaccine Induces Macaque-Specific Systemic Neutralizing Antibodies but Does Not Influence Pre-Existing Intestinal Immunity

Tomonori Nochi; Yoshikazu Yuki; Yuko Katakai; Hiroaki Shibata; Daisuke Tokuhara; Mio Mejima; Shiho Kurokawa; Yuko Takahashi; Ushio Nakanishi; Fumiko Ono; Hitomi Mimuro; Chihiro Sasakawa; Fumio Takaiwa; Keiji Terao; Hiroshi Kiyono

We previously showed that oral immunization of mice with a rice-based vaccine expressing cholera toxin (CT) B subunit (MucoRice-CT-B) induced CT-specific immune responses with toxin-neutralizing activity in both systemic and mucosal compartments. In this study, we examined whether the vaccine can induce CT-specific Ab responses in nonhuman primates. Orally administered MucoRice-CT-B induced high levels of CT-neutralizing serum IgG Abs in the three cynomolgus macaques we immunized. Although the Ab level gradually decreased, detectable levels were maintained for at least 6 mo, and high titers were rapidly recovered after an oral booster dose of the rice-based vaccine. In contrast, no serum IgE Abs against rice storage protein were induced even after multiple immunizations. Additionally, before immunization the macaques harbored intestinal secretory IgA (SIgA) Abs that reacted with both CT and homologous heat-labile enterotoxin produced by enterotoxigenic Escherichia coli and had toxin-neutralizing activity. The SIgA Abs were present in macaques 1 mo to 29 years old, and the level was not enhanced after oral vaccination with MucoRice-CT-B or after subsequent oral administration of the native form of CT. These results show that oral MucoRice-CT-B can effectively induce CT-specific, neutralizing, serum IgG Ab responses even in the presence of pre-existing CT- and heat-labile enterotoxin-reactive intestinal SIgA Abs in nonhuman primates.


Plant Biotechnology Journal | 2013

Induction of toxin‐specific neutralizing immunity by molecularly uniform rice‐based oral cholera toxin B subunit vaccine without plant‐associated sugar modification

Yoshikazu Yuki; Mio Mejima; Shiho Kurokawa; Tomoko Hiroiwa; Yuko Takahashi; Daisuke Tokuhara; Tomonori Nochi; Yuko Katakai; Masaharu Kuroda; Natsumi Takeyama; Koji Kashima; Michiyo Abe; Yingju Chen; Ushio Nakanishi; Takehiro Masumura; Yoji Takeuchi; Hiroko Kozuka-Hata; Hiroaki Shibata; Masaaki Oyama; Kunisuke Tanaka; Hiroshi Kiyono

Plants have been used as expression systems for a number of vaccines. However, the expression of vaccines in plants sometimes results in unexpected modification of the vaccines by N-terminal blocking and sugar-chain attachment. Although MucoRice-CTB was thought to be the first cold-chain-free and unpurified oral vaccine, the molecular heterogeneity of MucoRice-CTB, together with plant-based sugar modifications of the CTB protein, has made it difficult to assess immunological activity of vaccine and yield from rice seed. Using a T-DNA vector driven by a prolamin promoter and a signal peptide added to an overexpression vaccine cassette, we established MucoRice-CTB/Q as a new generation oral cholera vaccine for humans use. We confirmed that MucoRice-CTB/Q produces a single CTB monomer with an Asn to Gln substitution at the 4th glycosylation position. The complete amino acid sequence of MucoRice-CTB/Q was determined by MS/MS analysis and the exact amount of expressed CTB was determined by SDS-PAGE densitometric analysis to be an average of 2.35xa0mg of CTB/g of seed. To compare the immunogenicity of MucoRice-CTB/Q, which has no plant-based glycosylation modifications, with that of the original MucoRice-CTB/N, which is modified with a plant N-glycan, we orally immunized mice and macaques with the two preparations. Similar levels of CTB-specific systemic IgG and mucosal IgA antibodies with toxin-neutralizing activity were induced in mice and macaques orally immunized with MucoRice-CTB/Q or MucoRice-CTB/N. These results show that the molecular uniformed MucoRice-CTB/Q vaccine without plant N-glycan has potential as a safe and efficacious oral vaccine candidate for human use.


Vaccine | 2009

Oral MucoRice expressing double-mutant cholera toxin A and B subunits induces toxin-specific neutralising immunity.

Yoshikazu Yuki; Daisuke Tokuhara; Tomonori Nochi; Hiroshi Yasuda; Mio Mejima; Shiho Kurokawa; Yuko Takahashi; Nobuhiro Kataoka; Ushio Nakanishi; Yukari Hagiwara; Kohtaro Fujihashi; Fumio Takaiwa; Hiroshi Kiyono

Rice-expressed cholera toxin B (CTB) subunit is a cold-chain-free oral vaccine that effectively induces enterotoxin-neutralising immunity. We created another rice-based vaccine, MucoRice, expressing nontoxic double-mutant cholera toxin (dmCT) with CTA and CTB subunits. Western-blot analysis suggested that MucoRice-dmCT had the shape of a multicomponent vaccine. Oral administration of MucoRice-dmCT induced CTB- but not CTA-specific serum IgG and mucosal IgA antibodies, generating protective immunity against cholera toxin without inducing rice-protein-specific antibody responses. The potency of MucoRice-dmCT was equal to that of MucoRice-CTB vaccine. MucoRice has the potential to be used as a safe multicomponent vaccine expression system.

Collaboration


Dive into the Mio Mejima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoko Kohda

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar

Shunji Kozaki

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge