Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miquel A. Gonzalez-Meler is active.

Publication


Featured researches published by Miquel A. Gonzalez-Meler.


New Phytologist | 2014

Synthesis and modeling perspectives of rhizosphere priming.

Weixin Cheng; William J. Parton; Miquel A. Gonzalez-Meler; Richard P. Phillips; Shinichi Asao; Gordon G. McNickle; Edward R. Brzostek; Julie D. Jastrow

The rhizosphere priming effect (RPE) is a mechanism by which plants interact with soil functions. The large impact of the RPE on soil organic matter decomposition rates (from 50% reduction to 380% increase) warrants similar attention to that being paid to climatic controls on ecosystem functions. Furthermore, global increases in atmospheric CO2 concentration and surface temperature can significantly alter the RPE. Our analysis using a game theoretic model suggests that the RPE may have resulted from an evolutionarily stable mutualistic association between plants and rhizosphere microbes. Through model simulations based on microbial physiology, we demonstrate that a shift in microbial metabolic response to different substrate inputs from plants is a plausible mechanism leading to positive or negative RPEs. In a case study of the Duke Free-Air CO2 Enrichment experiment, performance of the PhotoCent model was significantly improved by including an RPE-induced 40% increase in soil organic matter decomposition rate for the elevated CO2 treatment--demonstrating the value of incorporating the RPE into future ecosystem models. Overall, the RPE is emerging as a crucial mechanism in terrestrial ecosystems, which awaits substantial research and model development.


Plant Physiology | 1994

Acclimation of Respiratory O2 Uptake in Green Tissues of Field-Grown Native Species after Long-Term Exposure to Elevated Atmospheric CO2

Joaquim Azcón-Bieto; Miquel A. Gonzalez-Meler; Wendy Doherty; Bert G. Drake

C3 and C4 plants were grown in open-top chambers in the field at two CO2 concentrations, normal ambient (ambient) and normal ambient + 340 [mu]LL-1 (elevated). Dark oxygen uptake was measured in leaves and stems using a liquid-phase Clark-type oxygen electrode. High CO2 treatment decreased dark oxygen uptake in stems of Scirpus olneyi (C3) and leaves of Lindera benzoin (C3) expressed on either a dry weight or area basis. Respiration of Spartina patens (C4) leaves was unaffected by CO2 treatment. Leaf dry weight per unit area was unchanged by CO2, but respiration per unit of carbon or per unit of nitrogen was decreased in the C3 species grown at high CO2. The component of respiration in stems of S. olneyi and leaves of L. benzoin primarily affected by long-term exposure to the elevated CO2 treatment was the activity of the cytochrome pathway. Elevated CO2 had no effect on activity and capacity of the alternative pathway in S. olneyi. The cytochrome c oxidase activity, assayed in a cell-free extract, was strongly decreased by growth at high CO2 in stems of S. olneyi but it was unaffected in S. patens leaves. The activity of cytochrome c oxidase and complex III extracted from mature leaves of L. benzoin was also decreased after one growing season of plant exposure to elevated CO2 concentration. These results show that in some C3 species respiration will be reduced when plants are grown in elevated atmospheric CO2. The possible physiological causes and implications of these effects are discussed.


BioScience | 2003

Tracing Changes in Ecosystem Function under Elevated Carbon Dioxide Conditions

Diane E. Pataki; David S. Ellsworth; R. Dave Evans; Miquel A. Gonzalez-Meler; John S. King; Steven W. Leavitt; Guanghui Lin; Roser Matamala; Elise Pendall; Rolf T. W. Siegwolf; Chris van Kessel; James R. Ehleringer

Abstract Responses of ecosystems to elevated levels of atmospheric carbon dioxide (CO2) remain a critical uncertainty in global change research. Two key unknown factors are the fate of carbon newly incorporated by photosynthesis into various pools within the ecosystem and the extent to which elevated CO2 is transferred to and sequestered in pools with long turnover times. The CO2 used for enrichment in many experiments incorporates a dual isotopic tracer, in the sense that ratios of both the stable carbon-13 (13C) and the radioactive carbon-14 (14C) isotopes with respect to carbon-12 are different from the corresponding ratios in atmospheric CO2. Here we review techniques for using 13C and 14C abundances to follow the fate of newly fixed carbon and to further our understanding of the turnover times of ecosystem carbon pools. We also discuss the application of nitrogen, oxygen, and hydrogen isotope analyses for tracing changes in the linkages between carbon, nitrogen, and water cycles under conditions of elevated CO2.


Biochimica et Biophysica Acta | 2002

Activation of the plant mitochondrial alternative oxidase: insights from site-directed mutagenesis.

Ann L. Umbach; Miquel A. Gonzalez-Meler; Charles R. Sweet; James N. Siedow

The homodimeric cyanide-resistant alternative oxidase of plant mitochondria reduces oxygen to water without forming ATP. Arabidopsis thaliana alternative oxidase AOX1a is stimulated by pyruvate or other alpha-keto acids associating with a regulatory cysteine at position 78, by succinate in a serine-78 mutant, and by site-directed mutation of position 78 to glutamate. The mechanism of activation was explored with additional amino acid substitutions made at Cys-78 in AOX1a, which was functionally expressed in Escherichia coli. Oxidases with positively charged substitutions (Lys and Arg) were insensitive to pyruvate or succinate but were more active than the wild type without pyruvate. Uncharged substitutions (Gln, Leu) produced an inactive enzyme. These results indicate that activation may be due to conformational changes caused by charge repulsion between the dimer subunits and not through a direct role of alpha-keto acids in catalysis. Oxygen isotope fractionation experiments suggest that the charge of the amino acid at position 78 also affects the entry of oxygen into the active site. Therefore, the N-terminal portion of the protein containing residue 78 can indirectly affect both catalysis at the diiron active site and the path of oxygen to that site. In addition, both positively and negatively substituted alternative oxidases were stimulated by glyoxylate, suggesting the presence of a second activation site, possibly Cys-128.


New Phytologist | 2013

Stored carbon partly fuels fine‐root respiration but is not used for production of new fine roots

Douglas J. Lynch; Roser Matamala; Colleen M. Iversen; Richard J. Norby; Miquel A. Gonzalez-Meler

The relative use of new photosynthate compared to stored carbon (C) for the production and maintenance of fine roots, and the rate of C turnover in heterogeneous fine-root populations, are poorly understood. We followed the relaxation of a (13)C tracer in fine roots in a Liquidambar styraciflua plantation at the conclusion of a free-air CO(2) enrichment experiment. Goals included quantifying the relative fractions of new photosynthate vs stored C used in root growth and root respiration, as well as the turnover rate of fine-root C fixed during [CO(2)] fumigation. New fine-root growth was largely from recent photosynthate, while nearly one-quarter of respired C was from a storage pool. Changes in the isotopic composition of the fine-root population over two full growing seasons indicated heterogeneous C pools; < 10% of root C had a residence time < 3 months, while a majority of root C had a residence time > 2 yr. Compared to a one-pool model, a two-pool model for C turnover in fine roots (with 5 and 0.37 yr(-1) turnover times) doubles the fine-root contribution to forest NPP (9-13%) and supports the 50% root-to-soil transfer rate often used in models.


Annual Review of Plant Biology | 2015

Responses of Temperate Forest Productivity to Insect and Pathogen Disturbances

Charles E. Flower; Miquel A. Gonzalez-Meler

Pest and pathogen disturbances are ubiquitous across forest ecosystems, impacting their species composition, structure, and function. Whereas severe abiotic disturbances (e.g., clear-cutting and fire) largely reset successional trajectories, pest and pathogen disturbances cause diffuse mortality, driving forests into nonanalogous system states. Biotic perturbations that disrupt forest carbon dynamics either reduce or enhance net primary production (NPP) and carbon storage, depending on pathogen type. Relative to defoliators, wood borers and invasive pests have the largest negative impact on NPP and the longest recovery time. Forest diversity is an important contributing factor to productivity: NPP is neutral, marginally enhanced, or reduced in high-diversity stands in which a small portion of the canopy is affected (temperate deciduous or mixed forests) but very negative in low-diversity stands in which a large portion of the canopy is affected (western US forests). Pests and pathogens reduce forest structural and functional redundancy, affecting their resilience to future climate change or new outbreaks. Therefore, pests and pathogens can be considered biotic forcing agents capable of causing consequences of similar magnitude to climate forcing factors.


Physiologia Plantarum | 2009

Plastic and adaptive responses of plant respiration to changes in atmospheric CO2 concentration.

Miquel A. Gonzalez-Meler; Elena Blanc-Betes; Charles E. Flower; Joy K. Ward; Nuria Gomez-Casanovas

The concentration of atmospheric CO2 has increased from below 200 microl l(-1) during last glacial maximum in the late Pleistocene to near 280 microl l(-1) at the beginning of the Holocene and has continuously increased since the onset of the industrial revolution. Most responses of plants to increasing atmospheric CO2 levels result in increases in photosynthesis, water use efficiency and biomass. Less known is the role that respiration may play during adaptive responses of plants to changes in atmospheric CO2. Although plant respiration does not increase proportionally with CO2-enhanced photosynthesis or growth rates, a reduction in respiratory costs in plants grown at subambient CO2 can aid in maintaining a positive plant C-balance (i.e. enhancing the photosynthesis-to-respiration ratio). The understanding of plant respiration is further complicated by the presence of the alternative pathway that consumes photosynthate without producing chemical energy [adenosine triphosphate (ATP)] as effectively as respiration through the normal cytochrome pathway. Here, we present the respiratory responses of Arabidopsis thaliana plants selected at Pleistocene (200 microl l(-1)), current Holocene (370 microl l(-1)), and elevated (700 microl l(-1)) concentrations of CO2 and grown at current CO2 levels. We found that respiration rates were lower in Pleistocene-adapted plants when compared with Holocene ones, and that a substantial reduction in respiration was because of reduced activity of the alternative pathway. In a survey of the literature, we found that changes in respiration across plant growth forms and CO2 levels can be explained in part by differences in the respiratory energy demand for maintenance of biomass. This trend was substantiated in the Arabidopsis experiment in which Pleistocene-adapted plants exhibited decreases in respiration without concurrent reductions in tissue N content. Interestingly, N-based respiration rates of plants adapted to elevated CO2 also decreased. As a result, ATP yields per unit of N increased in Pleistocene-adapted plants compared with current CO2 adapted ones. Our results suggest that mitochondrial energy coupling and alternative pathway-mediated responses of respiration to changes in atmospheric CO2 may enhance survival of plants at low CO2 levels to help overcome a low carbon balance. Therefore, increases in the basal activity of the alternative pathway are not necessarily associated to metabolic plant stress in all cases.


Photosynthetica | 1997

Effects of prolonged drought stress and nitrogen deficiency on the respiratory O2 uptake of bean and pepper leaves

Miquel A. Gonzalez-Meler; R. Matamala; Josep Peñuelas

We analyzed the combined effects of mild drought stress and severe nitrogen (N) deprivation on respiration of acclimated mature leaves of beans (Phaseolus vulgaris L. cv. Garrofal) and peppers (Capsicum annuum L., pure line B6). Rates of oxygen uptake were measured polarographically, and inhibitors were added to the closed cuvette to compare the effects of environmental stress on the cytochrome (cyt) and alternative pathways of mitochondrial respiration. Dark oxygen uptake was decreased by the water deficit treatment in both plants, and in the case of N limitation leaf respiration rates (RD) of peppers were also reduced. RD of leaves of beans and peppers grown under N-limiting conditions did not follow the decrease in leaf N concentration, since RD expressed per unit of tissue N was considerably higher in the N-stressed leaves. Values obtained with specific inhibitors of the two terminal oxidases of mitochondrial respirations suggested that the cyt pathway of respiration was affected by mild drought and severe N stress. When plants were exposed to both environmental stresses, leaf respiration response was similar to that under N limitation, in this case the most severe stress.


Plant Physiology | 2007

Changes in Respiratory Mitochondrial Machinery and Cytochrome and Alternative Pathway Activities in Response to Energy Demand Underlie the Acclimation of Respiration to Elevated CO2 in the Invasive Opuntia ficus-indica

Nuria Gomez-Casanovas; Elena Blanc-Betes; Miquel A. Gonzalez-Meler; Joaquim Azcón-Bieto

Studies on long-term effects of plants grown at elevated CO2 are scarce and mechanisms of such responses are largely unknown. To gain mechanistic understanding on respiratory acclimation to elevated CO2, the Crassulacean acid metabolism Mediterranean invasive Opuntia ficus-indica Miller was grown at various CO2 concentrations. Respiration rates, maximum activity of cytochrome c oxidase, and active mitochondrial number consistently decreased in plants grown at elevated CO2 during the 9 months of the study when compared to ambient plants. Plant growth at elevated CO2 also reduced cytochrome pathway activity, but increased the activity of the alternative pathway. Despite all these effects seen in plants grown at high CO2, the specific oxygen uptake rate per unit of active mitochondria was the same for plants grown at ambient and elevated CO2. Although decreases in photorespiration activity have been pointed out as a factor contributing to the long-term acclimation of plant respiration to growth at elevated CO2, the homeostatic maintenance of specific respiratory rate per unit of mitochondria in response to high CO2 suggests that photorespiratory activity may play a small role on the long-term acclimation of respiration to elevated CO2. However, despite growth enhancement and as a result of the inhibition in cytochrome pathway activity by elevated CO2, total mitochondrial ATP production was decreased by plant growth at elevated CO2 when compared to ambient-grown plants. Because plant growth at elevated CO2 increased biomass but reduced respiratory machinery, activity, and ATP yields while maintaining O2 consumption rates per unit of mitochondria, we suggest that acclimation to elevated CO2 results from physiological adjustment of respiration to tissue ATP demand, which may not be entirely driven by nitrogen metabolism as previously suggested.


Plant Science | 2014

Mechanistic insights on the responses of plant and ecosystem gas exchange to global environmental change: lessons from Biosphere 2.

Miquel A. Gonzalez-Meler; Jessica S. Rucks; Gerard Aubanell

Scaling up leaf processes to canopy/ecosystem level fluxes is critical for examining feedbacks between vegetation and climate. Collectively, studies from Biosphere 2 Laboratory have provided important insight of leaf-to-ecosystem investigations of multiple environmental parameters that were not before possible in enclosed or field studies. B2L has been a testing lab for the applicability of new technologies such as spectral approaches to detect spatial and temporal changes in photosynthesis within canopies, or for the development of cavity ring-down isotope applications for ecosystem evapotranspiration. Short and long term changes in atmospheric CO2, drought or temperature allowed for intensive investigation of the interactions between photosynthesis and leaf, soil and ecosystem respiration. Experiments conducted in the rainforest biome have provided some of the most comprehensive dataset to date on the effects of climate change variables on tropical ecosystems. Results from these studies have been later corroborated in natural rainforest ecosystems and have improved the predictive capabilities of models that now show increased resilience of tropics to climate change. Studies of temperature and CO2 effects on ecosystem respiration and its leaf and soil components have helped reconsider the use of simple first-order kinetics for characterizing respiration in models. The B2L also provided opportunities to quantify the rhizosphere priming effect, or establish the relationships between net primary productivity, atmospheric CO2 and isoprene emissions.

Collaboration


Dive into the Miquel A. Gonzalez-Meler's collaboration.

Top Co-Authors

Avatar

Charles E. Flower

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Julie D. Jastrow

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Roser Matamala

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas J. Lynch

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Kathleen S. Knight

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Richard J. Norby

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Elena Blanc-Betes

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Jeffrey M. Welker

University of Alaska Anchorage

View shared research outputs
Top Co-Authors

Avatar

Lina Taneva

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge